BULLETIN of CARNEGIE MUSEUM OF NATURAL HISTORY # COMPOSITION, MICROGEOGRAPHIC VARIATION, AND SEXUAL DIMORPHISM IN CAATINGAS AND CERRADO BAT COMMUNITIES FROM NORTHEAST BRAZIL #### MICHAEL R. WILLIG Pymatuning Laboratory of Ecology, University of Pittsburgh, Linesville, Pennsylvania 16424 (Present Address: Department of Biological Sciences, Texas Tech University, Lubbock, Texas 79409) #### BULLETIN OF CARNEGIE MUSEUM OF NATURAL HISTORY Number 23, pages 1–131, 8 figures, 29 tables Issued 30 December 1983 Price \$14.00 a copy Robert M. West, Director Editorial Staff: Hugh H. Genoways, *Editor*; Duane A. Schlitter, *Associate Editor*; Stephen L. Williams, *Associate Editor*; Mary Ann Schmidt, *Technical Assistant*. © 1983 by the Trustees of Carnegie Institute, all rights reserved. CARNEGIE MUSEUM OF NATURAL HISTORY, 4400 FORBES AVENUE PITTSBURGH, PENNSYLVANIA 15213 ### CONTENTS | Abstract | 5 | |--|-----| | Introduction | 5 | | General Description of the Caatingas | 6 | | Study Sites | 9 | | Materials and Methods | 13 | | Faunal Composition | 13 | | Individual, Secondary Sexual, and Geographic Variation | 14 | | Results and Discussion | 15 | | Faunal Composition | 15 | | Species Accounts | 17 | | Saccopteryx leptura | 17 | | Peropteryx macrotis | 17 | | Noctilio leporinus | 17 | | Pteronotus davyi | 21 | | Micronycteris megalotis | 25 | | Micronycteris minuta | 29 | | Tonatia bidens | 37 | | Tonatia brasiliense | 37 | | Tonatia silvicola | 37 | | Mimon crenulatum | 37 | | Phyllostomus discolor | 41 | | Phyllostomus hastatus | 49 | | Trachops cirrhosus | 50 | | Glossophaga soricina | 50 | | Lonchophylla mordax | 61 | | Anoura geoffroyi | 61 | | Carollia perspicillata | 65 | | Sturnira lilium | 69 | | Uroderma magnirostrum | 73 | | Vampyrops lineatus | 77 | | Artibeus concolor | 77 | | Artibeus jamaicensis | 77 | | Artibeus lituratus | 85 | | Desmodus rotundus | 85 | | Diphylla ecaudata | 96 | | Natalus stramineus | 96 | | Furipterus horrens | 96 | | Myotis nigricans | 97 | | Eptesicus furinalis | 97 | | Lasiurus borealis | 97 | | Lasiurus ega | 97 | | | 111 | | | 112 | | | 112 | | | 112 | | | 112 | | | 119 | | | 120 | | • • | 120 | | Morphometres | 120 | | Microgeographic Variation | 124 | |----------------------------|-----| | Secondary Sexual Variation | 125 | | Acknowledgments | 127 | | Literature Cited | 128 | #### **ABSTRACT** Although the South American tropics contains the most diverse chiropteran fauna in the world, most information concerning bats from this region is of a taxonomic or distributional nature. Further, most of our knowledge of Neotropical biology is restricted to locales within mesic predictable biomes. The Brazilian Northeast is an extensive tropical semiarid region characterized by climatic unpredictability and topographic heterogeneity, yet its fauna has never been studied. An 18 month field study of chiropteran populations in Caatingas and Cerrado communities of the Northeast revealed individual, secondary sexual, and microgeographic variation in the bat fauna. Study sites were restricted in size to reduce the probability of sampling bats from different communities while intensive monthly sampling regimes were established to define the faunal composition of each community. Despite their geographic proximity, the Caatingas and Cerrado contain strikingly different faunas both taxonomically and ecologically. This disparity is most clearly exemplified by the insectivore guilds in each biome. Two hypotheses are proposed to account for the greater diversity of the Caatingas: 1) Large mesic enclaves (serrotes) are common in the Caatingas and probably insulate the fauna from the adverse effects of climatic vicissitudes, whereas great spatial heterogeneity produces distinct habitats for differential exploitation by different bat species, and 2) low insect abundance and diversity on the Chapada as well as reduced canopy complexity within habitats diminishes the number of insectivore niches available within the Cerrado. Statistical analyses based on 14 external and 16 cranial measurements showed that many species with at least moderate sample sizes display sexual dimorphism, whereas interdemic variation between Caatingas and Cerrado populations is somewhat rarer. The applicability of various hypotheses concerning sexual dimorphism in bats is reviewed in light of the observation that females are larger than males in many bat species. Significant geographic variation between adjacent populations of highly mobile species is maintained in many bat species in the Brazilian Northeast. #### INTRODUCTION The American tropics contains the richest microchiropteran fauna in the world (Patterson and Pascual, 1968). The suborder contains 28.8% of all genera and 27.4% of all species of mammals found in the Neotropics (Walker, 1975). In the more favorable parts of their range, bats may dominate the mammal fauna in terms of both density and species richness (Hershkovitz, 1972). Fifty-two percent of the Costa Rican mammal fauna is composed of bats (Robinson, 1971); similarly, bats represent 46% of the Panamanian mammal fauna (Handley, 1966). In sharp contrast to the situation in the Neotropics, bats represent only 12% of Nearctic mammal species (Walker, 1964). The disparity between northern and southern continents, and the high degree of endemism in the Neotropical bat fauna may be attributed in part to biogeographic conditions. South America, existing as an island from the Cretaeeous to late Cenozoic (Dietz and Holden, 1970) would offer great opportunity for chiropteran radiation. The later connection of South America with North America would account in part for the recent occupancy of tropical North America by bats, whereas the subsequent paucity of microchiropteran species might be caused, for the most part, by the vagaries of temperate zone climates. The taxonomic diversity of Neotropical bats is paralleled by a similar diversity of feeding forms. The year-round abundance of fruits, seeds, nectar, insects and other animals provides sustenance for bats of diverse dietary specializations. Indeed, the adaptive radiation of bats seems to have evolved around the exploitation of many types of food and the partitioning of particular food items by size within general categories (McNab, 1971; Smith and Genoways, 1974). Thus, Neotropical bats occupy a variety of different food niches (frugivory, piscivory, neetarivory, carnivory, insectivory and sanguinivory), whereas Nearctic bats are primarily insectivorous (McNab, 1971; Fleming et al., 1972). Simpson (1964) was the first to quantify the inerease in the number of mammal species as latitude decreases from 60° N latitude to the equator, while MacArthur (1965) attempted to define the factors affecting species diversity to account for the inereased richness observed in the tropics. More recently, J. Wilson (1974) has shown that Simpson's original observations are an artifact caused by an exponential increase in the number of bat species with decreasing latitude (see also Mares and Ojeda, 1982). Despite the significant contribution of bats to Neotropical diversity, few works other than the investigations of Flemming et al. (1972), Thomas (1972), and Heithaus et al. (1975) have considered diversity within chiropteran communities. Nonetheless, communities are the context in which species survive and evolve (Whittaker, 1975) and a firm understanding of Neotropical diversity gradients is predicated upon an adequate delineation of the faunal composition of restricted areas within the Neotropics. Many surveys of bat faunas have been made throughout South America, but most have dealt with large geopolitical units (e.g. Husson, 1962; Tuttle, 1970; Handley, 1976; Koopman, 1978). The fauna of broad geographic regions is the sum of the various communities that they contain; however, the differences between communities within a particular biome cannot, in general, be ascertained from such widespread collecting procedures. Biomes as distinctive as the Caatingas and Cerrado would be expected to harbor unique faunas. Further, due to the unpredictable and severe climatic conditions characteristic of the Caatingas, it would be expected to support a diminished or depauperate fauna when compared to Cerrado habitats. The close proximity of these biomes in the Exu-Crato region of Brazil would effectively eliminate dispersal as a factor affecting the presence or absence of a particular species and thus, climatic or ecological factors should remain as important limiting agents. Like the previously considered studies of faunal composition, chiropteran systematic studies usually deal with morphometric variation within relatively large areas containing a number of potentially different populations. It is therefore difficult to resolve individual and interdemic variation because samples from particular populations within an area are unidentified or are usually small in size and not amenable to statistical analyses. Further, few comprehensive statistical analyses of chiropteran variation appear in the literature; the works of Taddei (1975a, 1975b, 1979) are an obvious exception for the Phyllostomidae. This study defines and analyzes individual, secondary sexual, and geographic variation of specimens from the Brazilian Northeast. The variation herein reported for bats from both Caatingas and Cerrado populations represents true intrademic variation and the statistical analyses (twoway analysis of variance) permit the isolation of both interdemic and secondary sexual variation, with the subsequent assessment of statistical significance facilitated for each factor. #### GENERAL DESCRIPTION OF THE CAATINGAS The Northeast of Brazil contains five major vegetation zones (see Mares et al., 1981, for a brief description of each zone). Although I was able to make limited surveys in three of these (Atlantic Rainforest, Palm Forest, and Caatinga-Cerrado
Contact Zones), the research considered herein is restricted to the Caatingas and Cerrado habitats, where I was able to conduct intensive field work. The Caatingas (Fig. 1) is an extensive semiarid region lying between 35° and 45° west longitude and 3° and 16° south latitude (Reis, 1976). It occupies approximately 650,000 km² (Frota-Pessoa et al., 1971) and is characterized by extreme temporal and spatial climatic variability (Markham, 1972; Markham and McLain, 1977). Annual rainfall may reach 1,600 mm in some areas, yet during drought years other localities may not receive any precipitation at all (Melo, 1956; Markham, 1972). Although cyclic characteristics have been suggested (Markham, 1972, 1974, 1975; and Markham and McLain, 1977), more recent analyses utilizing highly sophisticated statis- tical techniques indicate that the pattern of rainfall is truly random. As such, the Caatingas has been called the "zone of calamity" (Freise, 1938) and the "region of anomalous drought" (Markham, 1972). Streilein (1981) has succinctly summarized the climatic attributes of the Caatingas. It is sufficient here to note that the variability and distribution of rainfall in the Caatingas is affected by the interrelationships between the Southeast Trade Winds (xeric inducing agents) and three large, mobile, moistureladen air masses—the equitorial continental mass, the Intertropical Convergence Zone, and the South Atlantic Anticyclone. Precipitation is further affected and diminished by the complex and irregular pattern of orographic barriers (Fig. 2). Three major geological elements account for the marked topographic relief of the Caatingas (Ab'Saber, 1970). The most extensive component is the basement layer of pre-Cambrian crystalline rock which produces extensive flatlands and gradual slopes. Numerous granitic protrusions in the form Fig. 1.—The Brazilian Caatingas (delimited by the dotted line) occupies an area of over 650,000 km² and is contained within nine states of the Northeast. Because of its irregular shape and susceptibility to extended periods of drought, the region is known as "o poligono das secas" (the polygon of drought). Numbers indicate the location of Caatingas (1) and Cerrado (2) study sites (modified from Mares et al., 1981). of low mountain ranges (serras), small mountain ridges (serrotes), or lowland outcroppings (lajeiros) punctuate the otherwise flat surface and appreciably increase habitat complexity within the Caatingas. In areas unaffected by post-Cretaceous erosion, the original sandstone substrate still covers the crystalline basement and produces large mesa-like plateaus or chapadas (James, 1942; Ab'Saber, 1970). The elemental composition of these sandstone chapadas, in conjunction with their unique hydrological prop- Fig. 2.—The windward side of large chapadas and serrotes (indicated by thick black lines) receive appreciable amounts of orographic rainfall due to the adiabatic cooling of rising air currents (arrows). This produces a rain shadow throughout the interior of the Northeast (shaded area) which is unpredictably subject to periods of severe drought (adapted from Markham, 1972). The Caatingas collection site (1) is located within the rain shadow whereas the Cerrado site (2) is on the windward side of the Chapada do Araripe. erties, results in extensive edaphic Cerrado habitats occurring in various locations throughout the Northeast. The zoogeographic affinities of the Caatingas fauna are unclear. Although a prominent biogeographic role has been ascribed to the region (Haffer, 1979; Simpson and Haffer, 1978), Sick (1965), Vanzolini (1974, 1976), Steilein (1981), and Mares et al. (1981) have indicated extremely low levels of vertebrate endemism in both the Caatingas and interdigitating Cerrado habitats. In general, the mammal faunas of the Caatingas and Cerrado appear to be quite similar (Guimaraes, 1972), with elements from the Amazon Basin, Atlantic Rainforest and the Chaco xeric belt composing the major portion of each fauna. An analysis of Fig. 3.—The Chapada do Araripe, a large sandstone plateau, dominates the landscape in the vicinity of both the Caatingas (Exu, Pernambuco) and Cerrado (Crato, Ceará) study sites. Caatingas study sites are located at least 10 to 15 km from the base of the Chapada. The Cerrado study area is located in the Floresta Nacional Araripe-Apodí on the top of the Chapada do Araripe, south of the city of Crato, Ceará. Heavy lines indicate the edge of the Chapada while thin lines indicate state boundaries (modified from Dias, 1960). the non-volant mammal distribution patterns and a re-analysis of other vertebrate groups from the Caatingas (Mares et al., unpublished manuscript) indicates that the Caatingas was not an effective xeric refugium for mammals during more mesic times of the Pleistocene. Like the rainfall patterns that characterize the area, the Caatingas small-mammal fauna is anomalous, lacking the obvious physiological and morphological adaptations expected in a xeric environment. #### STUDY SITES My research was primarily restricted to the geographic center of the Caatingas in order to take advantage of the complete array of habitats available. Field work was equally divided between the municipality of Exu, Pernambuco, and the adjacent municipality of Crato, Ceará, in the Floresta Nacional Araripe-Apodí. The area is extremely complex; all three major geological formations characteristic of the Northeast are in close proximity with both Caatingas and Cerrado habitats represented. An extensive plateau, the Chapada do Araripe, dominates the landscape and extends for many miles along the border between Ceará and Pernambuco (Fig. 3). The Chapada has a pronounced effect on Fig. 4.—Schematic representation of the mosaic of habitats in the Caatingas and their proximity to Cerrado vegetation on the Chapada do Araripe and to humid forest in areas of orographic rainfall. Key to habitat types: A) Caatinga Baixa; B) Serrote; C) Caatinga Alta; D) Lajeiro; E) Cerrado; EE) disturbed areas; F) Cerradão; G) humid forest. local rainfall patterns. On its windward side (Crato, Ceará), orographic precipitation produces conditions more conducive to mesic tropical vegetation, whereas on its leeward side (Exu, Pernambuco), xeric Caatingas vegetation predominates. The sandstone composition of the Chapada, in conjunction with elevated precipitation and lowered temperatures supports an edaphic form of Cerrado vegetation within the confines of the Caatingas proper. A schematic representation of the mosaic of habitats present in the Caatingas and their relationship to the Chapada do Araripe and Cerrado habitats is illustrated in Fig. 4. #### THE CAATINGAS In general, the Caatingas contains a variable assemblage of xeric-adapted plants. Much of the flora is characteristically deciduous during periods of water deficit, but members of the Cactaceae and Euphorbiaceae conspicuously exploit an alternate strategy of reduced leaf area and increased water storage capacity. The substantial xerophytic adaptations of the Caatingas flora, especially those exhibited by the Cactaceae and Euphorbiaceae demonstrate that this region has been subjected to xeric conditions for a substantial period of time (Alvim, 1949). Based upon vegetational physiognomy and local geology, four different Caatingas habitats may be distinguished—Caatinga Baixa (Low Caatinga), Caatinga Alta (High Caatinga), Serrotes, and Lajeiros (Fig. 5). Floral composition is often variable both within and between habitats; thus it is not the most effective criterion for defining habitat types. #### Caatinga Baixa Throughout lower elevations in the Exu region, Caatinga Baixa habitat predominates (Fig. 6). This is the most extensive habitat found in the region Fig. 5.—Panoramic view of Caatingas habitats illustrating serrotes (in the background) with Caatinga Alta vegetation present on the slopes. The foreground contains fields in various stages of ecological succession. because it is associated with the ubiquitous nongranitic crystalline substrata in the Northeast. Plant species composition differs greatly between localities; however, the vegetation is quite dense and many of the most common plants are shared between sites (see Mares et al., 1981). Trees are xerophytic and may reach a height of 3 to 5 m while occasional emergents may attain a height of 8 m. Large cacti such as *Cereus jamacaru* (Mandacaru), *Cephalocereus gounellei* (Xique-xique), and *Zehntherella squamulosa* (Facheiro) are common components, especially visible during dry periods. Minor differences in topography, variation in soil parameters, prior utilization by man, and differential exploita- Fig. 6. — A locality in Exu, Pernambuco, containing a Lajeiro in the foreground with typical Caatinga Baixa vegetation in the background. tion by domestic animals generate microhabitat mosaics which defy categorization using only a few broad generalizations. #### Caatinga Alta Larger xerophytic trees (10–12 m) characterize Caatinga Alta (see Mares et al., 1981). They typically lose their leaves in synchrony during the dry season and form a closed canopy in the wet season. The understory is poorly developed and density is lower than in Caatinga Baixa habitats. Caatinga Alta habitats are restricted to higher elevations, hillsides, and the perimeters of gentle valleys formed by serrotes and serras; these habitats are, therefore, more mesic than the surrounding Low Caatinga sites (Fig. 5). Small rock outcroppings or rock piles are dispersed throughout the forest floor, but rarely reach sizes greater than 25 m². #### Lajeiros Lajeiros are granitic rock outcroppings, principally distributed throughout areas dominated by Caatinga Baixa (Fig. 6). They are variable in both size and shape although they usually do not exceed a height of 15 m. In their simplest form, lajeiros may be small unbroken rock faces but at the other extreme, their area would best be measured in hectares. These
expansive formations may be composed of rock faces containing many fissures studded with cacti and strewn with boulders of variable size and shape. Pilosocereus gounelli, Cereus jamacaru, and Opuntia palmadora (Palma) are the cacti most frequently associated with these outcroppings. Complex lajeiros appreciably magnify topographic complexity in the Caatingas (Mares et al., 1981); they appear to offer mesic refugia for many species of non-volant mammals (Lacher, 1981; Streilein, 1981) and thus are important habitats influencing mammal distribution patterns. #### Serrotes Numerous granitic serrotes are found in the municipality of Exu (see Figs. 3, 4 and 5). These mountain ridges harbor the most mesic components of the Caatingas flora and remain green for extended periods during the dry season. These areas, termed "brejos" by Andrade and Lins (1964), contain floral affinities with the Atlantic Rainforest vegetation and are important mesic refugia for both plants and animals in the Caatingas. Localities of increased orographic rainfall, like serrotes, are common Fig. 7.—A typical locality on the Chapada do Araripe (Crato, Ceará) exhibiting three of the characteristic components of Cerrado habitats—pervasive grass species, small shrubs, and gnarled trees throughout the Caatingas; the state of Pernambuco alone contains 22 major brejos (Andrade and Lins, 1964). Palms such as *Syargus oleracea* and *Accrocomia intumescens* are typically restricted to serrotes having increased orographic rainfall. Because the upper limits of Caatinga Alta also occur on the slopes of serrotes, there are places where substantial intermingling of their constituent vegetation occurs. #### THE CHAPADA DO ARARIPE The Floresta Nacional Araripe-Apodí contains most of the collection sites examined on the Chapada do Araripe. The plateau is characterized by a thin layer of sandy red soil covering a hard sandstone substrate. Rocks, boulders, and stones are absent from the Chapada as are permanent bodies of water. During the rainy season, low lying depressions may be covered with temporary pools con- Fig. 8.—A road cutting through Cerradão vegetation at the edge of the Chapada do Araripe (Crato, Ceará). Large trees and a closed canopy distinguish this habitat from Cerrado. taining from 6 to 12 inches of water. In general, the vegetation is sclerophyllous and semideciduous. Trees and shrubs lose their leaves each year, but leaf loss is asynchronous both intra- and interspecifically. Based upon physiognomy and density, two kinds of habitats are recognizable on the Chapada—Cerrado and Cerradão. Their relationship to each other and Caatingas vegetation is shown in Fig. 4. #### Cerrado Physiognomically, the Cerrado on the Chapada do Araripe is an open tree and shrub woodland with a pervasive grass component (Fig. 7). Small trees (3–5 m) and shrubs (0.5–3 m) form approximately half of the vegetation cover, and various grass species occupy the remaining area. Taller trees, rarely exceeding a height of 15 m are scattered throughout the area. As a result, the canopy is open, irregular and undulating in profile, with numerous areas lacking woody plants. The taller trees and shrubs have characteristically gnarled trunks and twisted branches; root penetration into the sandstone bedrock is minimal. The most common trees, shrubs, and grasses are listed in Mares et al. (1981). #### Cerradão Sections of the Floresta Nacional Araripe-Apodí, for the most part bordering the windward side of the Chapada do Araripe, differ substantially from Cerrado vegetation in plant density, physiognomy, and species importance. Stands with very little grass, few shrubs, and numerous trees are herein referred to as Cerradão (Fig. 8). Larger trees compose Cerradão habitats and form a closed canopy between 12 and 17 m high. These trees do not have the gnarled appearance characteristic of the Cerrado. The understory may vary from quite dense to sparse; however, in either situation, small shrubs (~1 m) and grasses are rare. #### MATERIALS AND METHODS #### FAUNAL COMPOSITION Bats were collected by netting from September 1976 to May 1978 in Caatingas (Municipality of Exu, Pernambuco) and Cerrado (Chapada do Araripe, Municipality of Crato, Ceará) habitats in northeastern Brazil. I was interested in determining the com- position of one community within the Caatingas and another within the Cerrado, so only monthly samples from within a restricted area were utilized in subsequent analyses. Sampling locales were contained within a circular area whose radius was 10 km in both biomes, and five to ten locales within that area were Table 1.—Description of external and cranial characters measured on specimens of bats captured in Exu, Pernambuco (Caatingas), and Crato, Ceará (Cerrado). #### **EXTERNAL CHARACTERS** Total length: greatest distance from the anteriormost portion of the snout to the distal point of the tail. Tail length: greatest distance from the distal caudal vertebra to the angle made by the tail when positioned perpendicular to the body. Hind foot length: distance from the heel of the foot to the tip of the longest toe including the claw. Ear length: distance from the basal notch of the ear to the furthermost point on the edge of the pinna. Tragus length: distance from the base of the tragus to its distal edge. Forearm length: distance from the outside of the wrist to the outside of the elbow when the wing is folded. Weight: weight of the fresh specimen. Length of digit one: length from the wrist to the distalmost point of the first digit, including the claw. Length of digit three: length from the wrist to the distal point on the phalange of digit three when the wing is maximally extended. Length of digit four: length from the wrist to the distal point on the phalange of digit four when the wing is maximally extended. Length of digit five: length from the wrist to the distal point on the phalange of digit five when the wing is maximally extended. Tibia length: length from the outermost point of the ankle to the outermost point of the knee. Calcar length: length from the distal point of the calcar to the angle made by the calcar when it is positioned perpendicular to the leg. Noseleaf length: length from the distalmost point of the noseleaf to its juncture with the rostrum. #### CRANIAL CHARACTERS Greatest length of skull: distance from the most anterior part of the rostrum (excluding teeth) to the posteriormost point of the skull. Condylobasal length: distance from the anteriormost edge of the premaxillae to the posteriormost projection of the occipital condyles. Zygomatic breadth: greatest distance between the outer margins of the zygomatic arches. Postorbital constriction: least distance across the top of the skull posterior to the postorbital process. Mastoid breadth: greatest width of the skull, including the mastoid. Breadth of the braincase: greatest width across the braincase posterior to the zygomatic arches. Rostral breadth: width of the rostrum at the suture between premaxillae and maxillae. Height of the braincase: greatest height of the braincase from a line perpendicular to the long axis of the skull (+1 mm). Breadth across the upper molars: maximum width from the outer alveolus of one molar to the outer alveolus of another. Breadth across the upper canines: width from the outer alveolus of one canine to the outer alveolus of the other canine. Length of maxillary tooth row: length from the anterior edge of the alveolus of the first tooth present in the maxillae to the posterior edge of the alveolus of the last molar. #### Table 1.—Continued. Length of the upper molariform toothrow: maximum length from the anterior edge of the alveolus of the first cheek tooth to the posterior edge of the alveolus of the last molar. Width of widest molar: width of widest molar in the maxilla exlcuding the alveolus. Greatest length of the mandible: length from the anteriormost point on the ramus (excluding teeth) to the posteriormost point on the coronoid process. Length of mandibular tooth row: length from the anterior edge of the alveolus of the canine to the posterior edge of the alveolus of the last molar in the mandible. Length of coronoid process: distance from the posteriormost point on the coronoid process to the base of the ramus. visited each month. Standard Japanese mist nets (10 m by 2 m) were used to collect specimens. Although the position of the nets was determined by peculiarities of the terrain and the physiognomy of the vegetation, I was usually able to erect 10 sections of netting per night in the most frequented collection sites. All nets were positioned before dusk and checked at 15-min intervals or sooner depending upon the level of bat activity. Because activity usually was quite high at most collection sites, the nets were, in effect, monitored continuously. Nets remained open for a minimum of 3.5 to 4 h each night. Initial field work indicated that additional netting was counter-productive; total activity diminished drastically after 2100-2130 hours and the same species caught earlier in the night were caught during later time periods. Supplemental collecting from roosts (for example, caves, tree hollows, buildings, culverts, etc.) was also done in order to verify that the faunal composition was not biased by collecting techniques. Half of the collection is housed in the Carnegie Museum of Natural History; the other half is deposited in the Museu de Zoologia da Universidade de São Paulo in Brazil. ## Individual, Secondary Sexual, and Geographic Variation When collections were sufficiently large, 14 external characteristics and 16 cranial characteristics were determined for a sample of 20 adult males and 20 adult females from both Caatingas and Cerrado habitats. Otherwise the entire collection from each biome was used in subsequent analyses. Table 1 lists and describes all of the characters used throughout the statistical analyses. External characters were
measured to the nearest millimeter utilizing a metric ruler; cranial characters were measured with metric dial calipers to the nearest hundredth of a millimeter. Individual variation was determined for males and females within both Caatingas and Cerrado communities. The standard deviation (SD) and coefficient of variation were utilized as statistical estimates of individual variation for each mensural character. Two-way analysis of variance was utilized to ascertain the existence of geographic and secondary sexual variation in species with sufficiently large samples of males and females from both Caatingas and Cerrado biomes. When samples were small for one or both biomes, the data were combined and secondary sexual variation was examined utilizing one-way analysis of vari- ance; this technique also was utilized for species found only in one biome. Levene's test for homogeneity of variance was performed on all variables in order to determine the appropriateness of the analysis of variance. Sexual dimorphism for *size* is indicated when a particular sex consistently has larger sample means than the opposite sex and many of those characters exhibit statistically significant sexual variation. If the actual differences between population mean val- ues is small, large samples are required to detect statistical significance between sample means; in such cases where samples are small the consistent observation of larger mean values for a particular sex suggests sexual dimorphism for size but is inconclusive until larger samples can be obtained. Sexual dimorphism for shape occurs when many characters exhibit statistically significant secondary sexual variation but obvious trends for mean value relations do not exist. #### **RESULTS AND DISCUSSION** #### FAUNAL COMPOSITION Over 5,000 bat specimens representing 38 species, 29 genera, and eight families were captured during this study; 65% of the mammalian species known from the Exu-Crato area are members of the Chiroptera. Table 2 lists the bat species from this study in systematic order, indicates their relative abundance in Caatingas or Cerrado biomes, and identifies their feeding guild associations. Twenty species are shared between biomes; further, the Caatingas contains 13 species not found in the Cerrado, whereas the Cerrado contains five species not found in the Caatingas. If only the non-rare species in each biome are considered, the dissimilarities between areas become more pronounced—15 of the 24 species (over half of the species pool) occur exclusively in one or the other of the areas. Despite their geographic proximity, the Caatingas and Cerrado habitats contain markedly different bat faunas. Contrary to my earlier prediction, the Caatingas community is more species rich than the Cerrado community. A more detailed examination of the distribution of bats within each community suggests an explanation for this observation. Faunal composition and species densities are rather uniform throughout Cerrado habitats on the Chapada do Araripe. Conversely, the Caatingas is quite heterogeneous in this regard. Caatinga Baixa contains few species of bats, and those species present occur at low densities. Lajeiros contain a few additional species (Neoplatymops mattogrossensis and Peropteryx macrotis), but in general, the fauna of the Caatingas in low-lying areas (Caatinga Baixa and lajeiros) is depauperate. Species of foliage gleaning insectivore (Mimon crenulatum, Micronycteris megalotis, Micronycteris minuta, and Tonatia brasiliense) reach their highest density and occur almost exclusively in Caatinga Alta. With few exceptions, however, serrotes harbor the bulk of the species found in the Caatingas and it is on serrotes or the adjacent areas of Caatinga Alta that most species reach their highest densities. Thus, the relatively high species richness of the Caatingas can be attributed in part to the topographic relief and vegetational diversity of the Caatingas, but equally important from the point of view of the Chiroptera, the numerous serrotes punctuating the flat landscape of the Caatingas provide roosting sites and mesic refugia during drought periods. Frugivore guilds in the Caatingas and Cerrado are quite similar in terms of species richness and taxonomic composition. The main distinction among the guilds is the greater density of all frugivorous species on the Chapada and the presence there of an additional small species, *A. concolor*. The presence of *L. mordax* in the Caatingas is the most obvious difference between the biomes with respect to nectarivores. Neither frugivores nor nectarivores appreciably affect the faunal differences between the Caatingas and Cerrado. The notable absence of sanguinivores and piscivores from among the common Cerrado bats diminishes the diversity of that fauna. Large native mammals are absent from the Chapada and domestic species are prohibited by law from entering the Floresta Nacional Araripe-Apodí. Thus, it is not surprising to find vampires rare in Chapada habitats. The absence of standing bodies of water from the Chapada accounts for the rareness of piscivores. The disparity between the Caatingas and Cerrado bat faunas is most clearly manifested within the various insectivore guilds. The Caatingas harbors a diverse insectivore fauna; five species of foliage gleaning insectivores, two species of aerial insectivores, and two species of molossid insectivores reach appreciable densities there. In contrast, *M. nigricans*, *E. furinalis*, and *M. molossus* are the only insectivorous bats that attain appreciable densities Table 2.—Systematic listing of bats from Caatingas (Exu, Pernambuco) and Cerrado (Crato, Ceará) biomes; A indicates abundant, C indicates common, R indicates rare, and—indicates absent. Feeding guild abbreviations: AERIN, aerial insectivore; PISCI, piscivore; FOLGL, foliage-gleaning insectivore; OMNIV, omnivore; NECTA, nectarivore; FRUGI, frugivore; SANGU, sanguinivore; MOLOS, molossid aerial insectivore. | | | Pres | ence | | |-----------|---|-----------|---------|-------| | | Species | Caatingas | Cerrado | Guild | | Family | Emballonuridae | | | | | | Saccopteryx leptura | _ | R | AERIN | | | Peropteryx macrotis | C | _ | AERIN | | Family | Noctilionidae | | | | | anniy | | С | R | PISCI | | | Noctilio leporinus | C | K | PISCI | | Family | Mormoopidae | | | | | | Pteronotus davyi | R | R | AERIN | | Family | Phyllostomidae | | | | | Subfamily | Phyllostominae | | | | | Sublaminy | Micronycteris megalotis | R-C | R | FOLGL | | | Micronycteris meganotis
Micronycteris minuta | R-C | R | FOLGL | | | Tonatia bidens | R | K | FOLGL | | | Tonatia biaens
Tonatia brasiliense | R-C | _ | FOLGL | | | | | _ | | | | Tonatia silvicola | C | _ | FOLGL | | | Milmon crenulatum | R-C | _ | FOLGL | | | Phyllostomus discolor | R-C | A | OMNIV | | | Phyllostomus hastatus | R | Α | OMNIV | | | Trachops cirrhosus | C | _ | OMNIV | | Subfamily | Glossophaginae | | | | | | Glossophaga soricina | A | A | NECTA | | | Lonchophylla mordax | C | _ | NECTA | | | Anoura geoffroyi | R | C | NECTA | | Subfamily | Carolliinae | | | | | , | Carollia perspicillata | A | A | FRUGI | | Subfamily | Stenodermatinae | 1. | • • | | | Subfamily | Steriodermatinae
Sturnira lilium | D | C-R | FRUGI | | | | R
R | | | | | Uroderma ınagnirostrum | | R | FRUGI | | | Vampyrops lineatus | A | A | FRUGI | | | Artibeus concolor | _ | C-R | FRUGI | | | Artibeus jamaicensis | C | A | FRUGI | | | Artibeus lituratus | C-R | Α | FRUGI | | Subfamily | Desmodontinae | | | | | | Desmodus rotundus | A | R | SANGU | | | Dipliylla ecaudatá | R | _ | SANGU | | amily | Natalidae | | | | | | Natalus stramineus | _ | R | AERIN | | Comile | | | - * | | | Family | Furipteridae | D | | AERIN | | | Furipterus horrens | R | _ | AERIN | | Family | Vespertilionidae | | | | | | Myotis nigricans | C-A | С | AERIN | | | Eptesicus furinalis | - | C-R | AERIN | | | Lasiurus borealis | - | R | AERIN | | | Lasiurus ega | R | R | AERIN | | amily | Molossidae | | | | | | Molossops planirostris | R | _ | MOLOS | | | Molossops temminckii | R | R | MOLOS | | | Tadarida laticaudata | R | R | MOLOS | | | Neoplatymops mattogrossensis | C | _ | MOLOS | | | Molossus ater | R | | MOLOS | | | Molossus ater
Molossus molossus | A | A | MOLOS | | | | | Λ. | MOLOS | | | Eumops sp. | R | _ | MOLOS | on the Chapada do Araripe, and their presence is primarily restricted to disturbed areas containing abandoned buildings. None of the common Cerrado insectivores glean their prey from foliage. The savanna-like characteristics of the Chapada (that is, open spaces, low canopy, reduced vertical stratification within the canopy) as well as the depauperate nature of the Cerrado insect fauna limit the potential number of insectivore niches available for bats to exploit and to a large extent accounts for the depauperate nature of the Cerrado bat fauna in general. #### SPECIES ACCOUNTS #### Family Emballonuridae #### Saccopteryx leptura Schreber, 1774 This aerial insectivore was absent from the Caatingas and was quite rare on the Chapada do Araripe. Further, the specific designation of S. bilineata was applied to both specimens of S. leptura from the Chapada do Araripe by Mares et al. (1981). Very little is known about the biology of S. leptura and only isolated records of mensural characters appear in the literature. Statistical analyses could not be performed on the sample of two individuals obtained from the Chapada do Araripe; hence only selected individual measurements (after Swanepoel and Genoways, 1979) are reported here for an adult female and an adult male (total length, 61, 69; tail length, 17, 14; hindfoot length, 6, 6; ear length, 13, 13; greatest length of skull, -, 13.3; condylobasal length, -, 121; zygomatic breadth, -, -; postorbital constriction, 2.3, 2.3; breadth of braincase, 6.8, 6.9; length of the maxillary toothrow, 5.4, —; breadth across
the upper molars, 6.2, -). #### Peropteryx macrotis (Wagner, 1843) Of the three subspecies presently recognized, only *P. m. macrotis* occurs on the mainland of South America (Cabrera, 1957). Although uncommon in the Caatingas, this aerial insectivore was found roosting in small aggregations of up to 10 individuals in large openings inside rockpiles or culverts. Over a 6 month period, the number of individuals in each of two monitored roosting sites remained constant. Further, each roost contained only one adult male. This suggests that *P. m. macrotis* males might maintain small harems and exhibit resource defense polygony when appropriate roosting conditions are available. Distances between neighboring individuals in the roost varied from 15 to 60 cm. Individuals roosted by anchoring their feet and thumbs to the ceiling of the retreat site; hence, their bodies assumed an acute angle with respect to the overlying rock stratum. These bats were frequently observed leaving their roosts before dusk. The absence of *P. m. macrotis* from the Chapada do Araripe can most easily be explained by the lack of suitable roosting sites. The results of the statistical analyses of 13 external and 16 cranial characters on specimens from the Chapada do Araripe are summarized in Table 3. Sample means for females are larger than sample means for males for 10 external characters and 15 cranial characters; statistically significant differences exist for total length, tragus length, forearm length, length of digit III, length of digit V, condylobasal length, breadth across the upper molars, breadth across the upper canines, and greatest length of the maxillary. The sample means for males are larger than those for females for three external and one cranial character; none exhibit statistically significant differences. Sexual dimorphism with females larger than males is clearly supported by the data. # Family Noctilionidae Noctilio leporinus (Linnaeus, 1758) Of the three subspecies of this piscivore currently recognized, Noctilio l. leporinus is the appropriate designation for specimens from the Northeast of Brazil (Davis, 1973). It was exceptionally rare on the Chapada do Araripe; the few individuals caught there were probably transients from surrounding habitats. It was common in the Caatingas where it roosted during the day in groups of up to 30 individuals. The large hollow hardwood trees typically found in Caatinga Alta habitats provided its preferred diurnal roosting sites. Sex ratios did not significantly differ from one to one based upon overall netting records or data from individual day roosts (Binomial Test, P > .05). Approximately 47% of the 328 captured adult specimens from the Caatingas were males. Individuals frequently foraged at small lakes and ponds in groups containing five to 15 bats. Individuals seemed to coordinate feeding activities and concentrated foraging activity on the periphery of bodies of water. A concrete bridge which traversed a semipermanent stream contained a nocturnal feeding roost that was used by over 150 individuals. This roost was in continual use for the duration of Table 3.—Summary statistics for external and cranial characters (mean; standard deviation, SD; standard error of the mean, SE; coefficient of variation, CV; sample size, N) of Peropteryx macrotis males and females from the Caatinga biome. A one-way analysis of variance (Model I) with replication is presented for each character. The existence of significant secondary sexual variation is indicated by P values less than or equal to .050. | | Caa | itinga | Cer | rado | | | Analysis of vari | ance | | |------------|-------------|--------------|------------|-----------|---------------|---------|------------------|-------|--------------| | | ðð | φ | <i>ಕ</i> ಕ | QQ | Factor | df | MS | F | Significance | | | | | | Total | length | | | | | | Mean | 61.33 | 64.14 | | | Sex | 1 | 37.673 | 5.30 | .032 | | SD | 1.99 | 3.81 | | | Within | 20 | 7.110 | 2.50 | .022 | | SE | .51 | 1.44 | | | | 20 | ,,,, | | | | CV | 3.24 | 5.94 | | | | | | | | | n | 15 | 7 | | | | | | | | | | | | | Tail l | anath | | | | | | | 1.4.20 | 1414 | | Tan | | 1 | 016 | 0.0 | 0.45 | | Mean
SD | 14.20 | 14.14 | | | Sex
Within | 1
20 | .016
3.163 | .00 | .945 | | SE | 1.61
.42 | 2.12
.80 | | | vv [tiiiii | 20 | 5.105 | | | | CV | 11.34 | .80
14.99 | | | | | | | | | n | 15 | 7 | | | | | | | | | 11 | 13 | , | | 10 | | | | | | | | | | | Hindfoo | | | | | | | Mean | 6.60 | 6.57 | | | Sex | 1 | .004 | .01 | .919 | | SD | .51 | .79 | | | Within | 20 | .366 | | | | SE | .13 | .30 | | | | | | | | | CV | 7.73 | 12.02 | | | | | | | | | n | 15 | 7 | | | | | | | | | | | | | Ear le | enath | | | | | | Mean | 14.20 | 14.42 | | Lui ii | Sex | 1 | .249 | .49 | .491 | | SD | .56 | 14.43
.98 | | | Within | 20 | .506 | .49 | .491 | | SE | .15 | .37 | | | vv Ittiiii | 20 | .500 | | | | CV | 3.94 | 6.79 | | | | | | | | | n | 15 | 7 | | | | | | | | | •• | 15 | , | | | | | | | | | | | | | Tragus | length | | | | | | Mean | 6.13 | 6.71 | | | Sex | 1 | 1.611 | 6.25 | .021 | | SD | .52 | .49 | | | Within | 20 | .258 | | | | SE | .13 | .18 | | | | | | | | | CV | 8.48 | 7.30 | | | | | | | | | n | 15 | 7 | Forearm | _ | | | | | | Mean | 42.00 | 43.57 | | | Sex | 1 | 11.786 | 13.31 | .002 | | SD | .85 | 1.13 | | | Within | 20 | .886 | | | | SE | .22 | .43 | | | | | | | | | CV | 2.02 | 2.59 | | | | | | | | | n | 15 | 7 | | | | | | | | | | | | | Wei | ght | | | | | | Mean | 4.23 | 4.57 | | | Sex | 1 | .546 | 1.08 | .312 | | SD | .59 | .93 | | | Within | 20 | .507 | | | | SE | .15 | .35 | | | | | | | | | CV | 13.95 | 20.35 | | | | | | | | | n | 15 | 7 | | | | | | | | | | | | | Length of | digit one | | | | | | Mean | 7.53 | 7.14 | | | Sex | 1 | .728 | 1.00 | .330 | | SD | .74 | 1.07 | | | Within | 20 | .730 | | | | SE | .19 | .40 | | | | | | | | | CV | 9.83 | 14.99 | | | | | | | | | n | 15 | 7 | | | | | | | | Table 3.—*Continued*. | | | tinga | Cerrado | | | Analysis of vari | | | |------------------------|-------------|-------------|-------------|----------------|----|------------------|-------|--------------| | | ðô | φ | 88 99 | Factor | df | MS | F | Significance | | | | | Length o | f digit three | | | | | | Mean | 64.67 | 68.00 | Dengin o | Sex | 1 | 53.03 | 5.91 | .025 | | D | 2.38 | 4.08 | | Within | 20 | 8.97 | | | | EΕ | 62 | 1.54 | | | | | | | | CV | 3.68 | 6.00 | | | | | | | | | 15 | 7 | Length o | of digit four | | | | | | Mean | 45.80 | 47.43 | | Sex | 1 | 12.658 | 3.01 | .098 | | SD | 1.37 | 3.10 | | Within | 20 | 4.206 | | | | SE | .36 | 1.17 | | | | | | | | $\mathbb{C}\mathbf{V}$ | 2.99 | 6.54 | | | | | | | | | 15 | 7 | | | | | | | | | | | Length o | of digit five | | | | | | 1ean | 44.40 | 46.86 | | Sex | 1 | 28.82 | 12.41 | .002 | | D | 1.35 | 1.86 | | Within | 20 | 2.32 | | .002 | | E | .35 | .71 | | | | | | | | CV | 3.04 | 3.97 | | | | | | | | | 15 | 7 | | | | | | | | | | | Tibio | ı length | | | | | | /lean | 18.80 | 19.14 | 11010 | Sex | 1 | .561 | 1.21 | .284 | | D | .56 | .90 | | Within | 20 | .463 | 1,21 | .204 | | E | .15 | .34 | | ** 1611111 | 20 | .405 | | | | CV | 2.98 | 4.70 | | | | | | | | | 15 | 7 | | | | | | | | | | | Calca | r length | | | | | | 1ean | 15.80 | 16.14 | Carca | | 1 | 5(1 | 2.4 | 5.60 | | D | 1.27 | 1.35 | | Sex
Within | 1 | .561 | .34 | .568 | | E | .33 | .51 | | VV 1111111 | 20 | 1.660 | | | | Ž
Ž | 8.04 | 8.36 | | | | | | | | . • | 15 | 7 | | | | | | | | | | | | | | | | | | | 12.75 | 12.00 | Greatest le | ngth of skull | | | | | | 1ean | 13.75 | 13.99 | | Sex | 1 | .258 | 3.67 | .070 | | D
E | .30 | .17 | | Within | 20 | .070 | | | | EV | .08
2.18 | .06 | | | | | | | | • | 15 | 1.22
7 | | | | | | | | | 15 | , | | | | | | | | | | | Condylol | asal length | | | | | | 1 ean | 12.74 | 13.03 | | Sex | 1 | .397 | 5.00 | .037 | | SD | .25 | .35 | | Within | 20 | .080 | | | | E | .06 | .13 | | | | | | | | ·V | 1.96 | 2.69 | | | | | | | | | 15 | 7 | | | | | | | | | | | 7 | itio buog del- | | | | | | Mean | 8.15 | 8.31 | Zygoma | tic breadth | 1 | 124 | 3.01 | 400 | | SD | .16 | .23 | | Sex | 1 | .134 | 3.91 | .480 | | SE SE | .04 | .23 | | Within | 20 | .034 | | | | CV | 1.96 | .09
2.77 | | | | | | | | - T | 1.70 | 4.11 | | | | | | | Table 3.—*Continued*. | | Caat | | Сегтадо | | | Analysis of varia | | | |-----------------|--------------|------------|---------------|---|---------|-------------------|-------|-------------| | | <i>దే</i> దే | QQ | \$\$ \$\$ | Factor | df | MS | F | Significano | | | | | Posto | orbital constriction | | | | | | 1ean | 2.47 | 2.50 | 1 0010 | Sex | 1 | .003 | .15 | .702 | | D | .15 | .14 | | Within | 20 | .023 | .13 | .702 | | E | .04 | .05 | | ** 1(11111 | 20 | .023 | | | | CV | 6.07 | 5.60 | | | | | | | | - V | 15 | 7 | | | | | | | | | 13 | , | | | | | | | | | | | Λ | 1astoid breadth | | | | | | Mean | 7.25 | 7.27 | | Sex | 1 | .003 | .08 | .786 | | SD | .13 | .30 | | Within | 20 | .039 | | | | SE | .03 | .12 | | | | | | | | CV | 1.79 | 4.13 | | | | | | | | 1 | 15 | 7 | | | | | | | | | | | Bre | adth of braincase | | | | | | Aean | 6.49 | 6.49 | | Sex | 1 | .000 | .00 | .989 | | SD | .16 | .09 | | Within | 20 | .020 | | | | E | .04 | .03 | | | | | | | | CV | 2.47 | 1.39 | | | | | | | | 1 | 15 | 7 | | | | | | | | | | | I | Rostral breadth | | | | | | Mean | 5.07 | 6.15 | • | Sex | 1 | .134 | 2.45 | .135 | | | 5.97 | 6.15 | | Within | 1
18 | .055 | 2.43 | .133 | | SD | .23 | .24
.10 | | VV ILIIIII | 10 | .033 | | | | SE
CV | .06
3.85 | 3.90 | | | | | | | | . v
1 | 14 | 6 | | | | | | | | 1 | 14 | O | | | | | | | | | | | Не | ight of braincase | | | | | | Mean | 7.45 | 7.50 | | Sex | 1 | .009 | .16 | .692 | | SD | .26 | .18 | | Within | 19 | .058 | | | | SE | .07 | .07 | | | | | | | | CV | 3.49 | 2.40 | | | | | | | | 1 | 15 | 6
										Breadth a	across the upper mola	rs					Mean	6.02	6.48		Sex	1	.896	13.53	.002		SD	.21	.35		Within	18	.066				SE	.06	.14								CV	3.49	5.40								1	14	6											Breadth a	across the upper canin	es					Mean	3.47	3.67	27000770	Sex	1	.160	6.52	.020		SD	.14	.19		Within	18	.025	0.52	.020		SE	.04	.08		***************************************	10	.025				CV	4.03	5.18								1	14	6								•	• •	Ü	Lauathat	* 4 h a a ill a 4 a a 4 h u									Lengin oj	the maxillary toothre		00=	• .	607		Mean	5.49	5.53		Sex	1	.007	.16	.695		SD	.18	.27		Within	19	.043				SE	.05	.11								CV	3.28	4.88								1	15	6											Length of the	upper molariform to						Mean	4.01	4.10		Sex	1	.032	1.40	.252		SD	.16	.14		Within	19	.023				SE	.04	.06								CV	3.99	3.41								n	15	6							Table 3.—Continued.		Caat	inga	Cen	rado			Analysis of varia	ance			------	------	------	-----	-----------------	------------------	------------------	-------------------	------	--------------			88	99		Şδ	Factor	df	MS	F	Significance						Width of th	e widest molar						Mean	1.73	1.78			Sex	1	.011	2.49	.131		SD	.06	.08			Within	19	.004				SE	.02	.03									CV	3.47	4.49									n	15	6												G	Greatest lengti	h of the mandib	le					Mean	9.51	9.91			Sex	1	.747	8.03	.011		SD	.27	.37			Within	19	.093				SE	.07	.14									CV	2.84	3.73									n	14	7												Lei	ngth of the m	andibular toothi	FOW ¹					Mean	5.64	5.77			Sex	1	.077	1.61	.219		SD	.17	.29			Within	19	.048				SE	.05	.11									CV	3.01	5.03									n	14	7												1	Length of the	coronoid proces	is.					Mean	2.47	2.63			Sex	1	.104	2.89	.109		SD	.19	.20			Within	16	.036				SE	.06	.08									CV	7.69	7.60									n	11	7								the study and had probably been used previously for an extended period (based upon the quantity of accumulated feces). The Caatingas collection represents the largest analyzed sample of *Noctilio leporinus* from a single freely interbreeding population (see Davis, 1973). The results of a statistical analysis of 20 mensural morphological characters in N. l. leporinus are summarized in Table 4. Like the results reported by Davis (1973) for specimens from the Pacific versant of Chiapas, Mexico (N. l. mastivus), males tend to be more variable than females with consistently larger coefficients of variation. The sample means for males are larger than sample means for females for all 13 external characters analyzed, with statistieally significant differences found for 10 of the variables. Males are statistically significantly different than, and larger on the average than, females for 15 of the 16 cranial characters. Although the sample mean for females is larger than that of males for the single character width of the widest molar, the difference is not statistically significant. Noctilio l. leporinus exhibits extreme sexual dimorphism with males consistently larger on the average than females. Davis (1973) reported morphometric data from three localities (Upper Amazon Basin, Lower Amazon Basin, and the Guianas) within the range of *N. l. leporinus*. This facilitates comparison with the Caatingas population which is the northeastern-most collection locale of the species for which extensive morphometric data are available. The Caatingas population has larger mean values for four of the five morphometric characters reported by Davis (1973) and as such represents the most robust population within the subspecies. Further, among populations of *N. l. leporinus*, the Caatingas specimens are morphometrically more similar to specimens from the Upper Amazon Basin than to other populations. ## Family Mormoopidae #### Pteronotus davyi Gray, 1838 This aerial insectivore was rare in both Caatingas and Cerrado biomes. Of the three subspecies currently recognized, *P.d. davyi* is the appellation appropriate for specimens from the Northeast of Brazil (Smith, 1972). Smith (1972) presented an analysis of systematic Table 4.—Summary statistics for external and cranial characters (mean; standard deviation, SD; standard error of the mean, SE; coefficient of variation, CV; sample size, n) of Noctilio leporinus males and females from both Caatinga and Cerrado biomes. Due to small sample sizes, data from both biomes were combined to determine the existence of significant (P< .050) secondary sexual variation via a one-way analysis of variance (Model I) with replication.		Caa	tinga	Cen	rado			Analysis of varia	nce			----------	---------------	-------------	--------	--------------	-------------	----	-------------------	-------	--------------			ేదే	φφ	ేరే	99	Factor	df	MS	F	Significance		-				Total	length						Mean	123.35	116.50	120.00	116.75	Sex	1	495.114	27.46	<.001		SD	3.84	4.57	_	5.38	Within	43	18.027				SE	.86	1.02	_	2.69							CV	3.11	3.92	_	4.61							n	20	20	1	4												length						Mean	27.60	25.30	28.00	25.75	Sex	1	56.400	11.52	.002		SD	2.54	2.06	-	1.50	Within	43	4.857	11.52	.002		SE	.57	.46	_	.75	VV Itiliii	43	4.037				CV	9.20	8.14	_	5.83							n v	20	20	1	4							11	20	20	1								N 4	30.60	27.25	20.00		ot length		22.810	15.05	< 001		Mean	28.60	27.25	30.00	27.00	Sex	1	23.819	15.85	<.001		SD	1.27	1.16	_	1.41	Within	43	1.503				SE	.29	.26	_	.71							CV	4.44	4.26	_	5.22							n	20	20	1	4											Ear	length						Mean	28.45	28.55	28.00	27.50	Sex	1	.032	.02	.888		SD	1.57	.95	_	.58	Within	43	1.599				SE	.35	.21	_	.29							CV	5.52	3.33	_	2.11							n	20	20	1	4											Tragu	s length						Mean	8.25	8.10	8.00	7.50	Sex	1	.635	1.98	.167		SD	.55	.55	-	.58	Within	43	.321				SE	.12	.12	_	.29							CV	6.67	6.79	_	7.73							n	20	20	1	4											Foreari	n length						Mean	85.70	84.85	84.00	84.75	Sex	1	6.914	1.71	.199		SD	1.98	2.11	_	2.06	Within	43	4.053				SE	.44	.47	_	1.03							CV	2.31	2.49	_	2.43							n	20	20	1	4											H/a	right						Mean	69.20	61.33	61.50		Sex	1	793.411	11.35	.002		SD			01.30	55.88		1	69.895	11.55	.002			11.45 2.56	4.07 .91	_	3.75 1.88	Within	43	09.893				SE CV	16.55		_	6.71								20	6.64 20		4							n	20	20	1													f digit one						Mean	13.45	12.35	13.00	12.75	Sex	1	11.468	15.92	<.001		SD	1.00	.75	_	.50	Within	43	.720				SE	.22	.17	_	.25							CV	7.43	6.07	_	3.92							n	20	20	1	4						Table 4.—Continued.	-	Caa	atinga	Ce	гтаdo			Analysis of var	iance			--------------	------------	--------	--------	-----------	---	----	-----------------	--------	--------------			ೆ ಂ	99		99	Factor	df	MS	F	Significance		_				Length of	digit three						Aean	169.35	164.75	167.00	166.00	Sex	1	205.143	10.13	.003		D	4.57	4.67	-	4.08	Within	43	20.250	10.13	.003		E	1.02	1.04	_	2.04	***************************************	73	20.230				CV	2.70	2.83	_	2.46								20	20	1	4																		_					f digit four						Aean	127.11	123.05	124.00	124.25	Sex	1	153.525	10.76	.002		D	3.93	3.86	_	2.75	Within	43	14.266				E	.88	.86	_	1.38							CV	3.09	3.14	_	2.21								20	20	1	4											Length o	f digit five						1ean	100.70	98.05	100.00	96.75	Sex	1	89.911	11.11	.002		D	3.13	2.69	-	2.50	Within	43	8.093		.002		E	.70	.60	_	1.25			0.075				CV	3.11	2.74	_	2.58								20	20	1	4											Til.i.	I am out la						lean	41.55	39.80	41.00	40.00	length Sex	1	32.006	17.52	<.001		D	1.36	1.40		1.41	Within	43		17.32	<.001		E	.30	.31	_	.71	WILIIII	43	1.827				v	3.27	3.52	_	3.53							•	20	20	1	3.33 4										•													r length						/lean	42.85	41.30	43.00	40.00	Sex	1	35.240	11.99	.001		D	1.95	1.56	_	.82	Within	43	2.940				E	.44	.35	_	.41							CV	4.55	3.78	_	2.05								20	20	1	4												ngth of skull						lean	26.77	24.93	24.50	24.43	Sex	1	36.745	69.69	<.001		D	.81	.47	_	.34	Within	43	.527				E	.18	.11	_	.17							·V	3.03	1.89	_	1.39								20	20	1	4																																																																																																																																																																																																																																																																																																																																																																																																																																																																																												
							asal length						l ean	24.33	23.16	23.60	23.23	Sex	1	14.265	103.22	<.001		D	.43	.30	_	.29	Within	43	.138				E	.10	.07	_	.14							·V	1.77	1.30	_	1.25								20	20	1	4												ic breadth						1ean	19.63	18.70	19.70	18.60	Sex	1	10.007	58.18	<.001		D	.54	.31	_	.16	Within	43	.172				E	.12	.07	_	.08							CV	2.75	1.66	_	.86							ı	20	20	1	4						Table 4.—Continued.		Caat		Сегг				Analysis of varia				----------	------------	------------	-------------	----------------	-----------------	-----	-------------------	--------	--------------			ðô	QΦ	ôδ	φ	Factor	df	MS	F	Significance						Postorbital	constriction						Mean	6.98	6.75	7.00	6.73	Sex	1	.641	15.23	<.001		SD	.16	.22	-	.36	Within	43	.042	13.23	00.		SE .	.04	.05	_	.18	** 1511111	73	.012				CV	2.29	3.26		5.35							1	20	20	1	4								20	20	•													l breadth						vlean	18.34	16.89	16.60	16.80	Sex	1	20.727	38.13	<.001		SD	.95	.38	_	.20	Within	43	.544				SE	.21	.09	_	.12							CV	5.18	2.25		1.19							ì	20	20	1	3											Breadth o	f braincase						Mean	13.77	13.47	14.00	13.78	Sex	1	1.161	17.85	<.001		SD	.22	.29	_	.25	Within	43	.065				SE	.05	.07	_	.13							CV	1.60	2.15	_	1.81							1	20	20	1	4											Rostral	breadth						Mean	9.96	9.57	9.90	9.50	Sex	1	1.776	33.61	<.001		SD	.25	.20	9.90 	.34	Within	43	.053	33.01	1.001		SE	.06	.04	_	.17	** 1111111	713	.033				CV	2.51	2.09	_	3.58							_ v 1	20	20	1	4							1	20	20			6.1											Sbraincase				004		Mean	15.83	14.91	15.30	15.20	Sex	1	8.013	14.37	<.001		SD	1.05	.33	_	.29	Within	43	.558				SE	.24	.07	_	.15							CV	6.63	2.21	_	1.91							1	20	20	1	4										B	readth across	the upper mola	rs					Mean	12.64	12.28	12.30	12.08	Sex	1	1.560	34.72	<.001		SD	.22	.19	_	.19	Within	43	.045				SE	.05	.04	_	.10							CV	1.74	1.55	_	1.57							ì	20	20	1	4										Bi	eadth across i	he upper canin	nes					Mean	9.44	8.73	9.60	8.65		1	5.974	109.89	<.001		SD	.26	.22	-	.13	Within	43	.054				SE	.06	.05	_	.07		1.5	.00,				CV	2.75	2.52	_	1.50							n .	20	20	1	4							•					axillary toothr	ow.					11.00	10.63	10.25			-		1.610	41.22	<.001		Mean	10.62	10.25	10.30	10.08	Sex	1	.039	41.22	<.001		SD	.22	.17	_	.10	Within	43	.037				SE	.05	.04	_	.05 .99							CV n	2.07 20	1.66 20	1	.99 4							1	20	20												_		molariform to		43.5	10.10	- 001		Mean	8.71	8.50	8.70	8.58	Sex	1	.435	13.13	<.001		SD	.22	.14	_	.22	Within	43	.033				SE	.05	.03	_	.11							CV	2.53	1.65	_	2.56							n	20	20	1	4						Table 4.—Continued.		Caat	inga	Cerra	ado	-		Analysis of varia	nce			------	------------	-------	-------	----------------	-----------------	-----	-------------------	-------	--------------			ೆ ∂	99	ేదే	ŞĞ	Factor	df	MS	F	Significance						Width of the	widest molar						Mean	3.29	3.31	3.00	3.23	Sex	1	.004	.22	.642		SD	.16	.10	_	.17	Within	43	.020				SE	.04	.02	_	.09							CV	4.86	3.02	_	5.26							n	20	20	1	4										G	reatest length	of the mandib	le					Mean	19.28	18.39	18.70	18.55	Sex	1	7.822	37.77	<.001		SD	.42	.49	_	.45	Within	43	.207				SE	.09	.11	_	.23							CV	2.18	2.66	_	2.43							n	20	20	1	4										Len	igth of the ma	ndibular tooth	row					Mean	11.63	11.13	11.30	11.10	Sex	1	2.629	80.58	<.001		SD	.19	.18	_	.08	Within	43	.033				SE	.04	.04	_	.04							CV	1.63	1.62	_	.72							n	20	20	1	4										I	ength of the c	coronoid proces	is.					Mean	7.10	6.41	6.70	6.45	Sex	1	5.005	66.86	<.001		SD	.33	.23	_	.10	Within	43	.075				SE	.07	.05	_	.05							CV	4.65	3.59	_	1.55							n	20	20	1	4						relations within the family Mormoopidae, and eonsidered to some extent, individual, secondary sexual, and geographic variation in the various species within the family. He stated that secondary sexual variation is apparent in P. davyi but noted that the number of characters that do differ between the sexes is related to geographic area. Data are combined from Caatingas and Cerrado populations because the samples from each site are small. Although geographic differences between areas can no longer be detected, this eompromise facilitates the detection of sexual dimorphism in P. davyi. The results of the statistical analyses are shown in Table 5. Statistically significant secondary sexual variation is evident in three external characters in which the males are larger on the average than the females (ear length, tragus length, length of digit I); statistically significant secondary sexual variation is detected in only one external character in which the females are larger on the average than the males. None of the cranial characters exhibits statistically significant secondary sexual variation and a pattern in mean values is not observed for either external or cranial characters. # Family Phyllostomidae Subfamily Phyllostominae Micronycteris megalotis (Gray, 1842) Of the four subspecies currently recognized, *M. m. megalotis* is the designation applicable to populations in Northeast Brazil (Jones and Carter, 1976). Mares et al. (1981) erroneously listed specimens of this species as *M. minuta* in their preliminary assessment of mammals from the Northeast of Brazil. This foliage gleaning insectivore was rare in both Caatingas and Cerrado biomes. Numerous authors have reported measurements from *M. megalotis* (see Swanepoel and Genoways, 1979); however, only Miller (1898), Lima (1926), Cunha Vieira (1942) and Taddei (1975a) included specimens from Brazil. Taddei (1975a) reported information on individual variation, but did not perform statistical analyses in order to detect sexual dimorphism. Because samples were small from both Caatingas and Cerrado habitats, the data are combined for subsequent statistical analyses. The results are summarized in Table 6. Among the external Table 5.—Summary statistics for external and cranial characters (mean; standard deviation, SD; standard error of the mean, SE; coefficient of variation, CV; sample size, n) of Pteronotus davyi males and females from both Caatinga and Cerrado biomes. Due to small sample sizes, data from both biomes were combined to determine the existence of significant (P < .050) secondary sexual variation via a one-way analysis of variance (Model I) with replication.		Caati	nga	Cen	rado			Analysis of vari	ance			-----------------	--------------	-----	-------	---------	---	----	------------------	-------	--------------			ನೆ ನೆ	φφ		99	Factor	df	MS	F	Significance						Total	l length						vlean	81.00		84.43	82.75	Sex	1	4.167	.42	.531		SD	_		2.44	4.19	Within	10	9.875				SE	_		.92	2.10	***************************************		2.0.5				CV	_		2.89	5.06							1	1		7	4							1	1		,								,	22.00		21.00		length		2 27 5		270		Mean	23.00		24.00	22.75	Sex	1	3.375	1.32	.278		SD	_		1.29	2.22	Within	10	2.563				SE	_		.49	1.11							CV	_		5.38	9.76							l	1		7	4											Hindfo	ot length						Aean	9.00		9.43	9.25	Sex	1	.042	.16	.699		D	_		.54	.50	Within	10	.263				SE .	_		.20	.25							CV	_		5.73	5.41							1	1		7	4											Ear	length						Aean	17.00		17.43	16.00	Sex	1	5.042	13.01	.005		D .	_		.54	.82	Within	10	.388	15.01	.005		E E	_		.20	.41	** 1 (111111	10	.500				CV	_		3.10	5.13							- Y 1	1		7	4							•	•		•		s length							6.00		7.00			1	2 275	6.00	.034		Mean	6.00		7.00	5.75	Sex	1	3.375	6.00	.034		SD	_		.82	.50	Within	10	.563				SE	_		.31	.25							CV	_		11.71	8.70							1	1		7	4												m length						⁄lean	48.00		50.86	51.00	Sex	1	.667	.42	.533		D	_		1.07	.82	Within	10	1.600				EΕ	_		.40	.41							CV	_		2.10	1.61							1	1		7	4											W_{i}	eight						√lean	12.00		12.14	13.25	Sex	1	3.375	10.80	.008		SD	_		.38	.87	Within	10	.313				SE	_		.14	.43		-																																																																																																																																																																																																																																																																																																																																																																																																																																																																																												
	CV	_		3.13	6.57							1	1		7	4												of digit one						Mean	8.00		8.43	8.00	Sex	1	.375	2.00	.188		SD	0.00		.54	0	Within	10	.188	2.00	.100		SE SE	_				** 1111111	10	.100					_		.20	0							CV	_		6.41	0							n	1		7	4						Table 5.—Continued.		Caati			таdо			Analysis of varia				--------------	--------	----	-----------	-------------	---------------	----	-------------------	------	-------------			ðð	99	ేరే	φφ	Factor	df	MS	F	Significano						Length o	f digit three						1ean	78.00		78.86	80.25	Sex	1	6.000	1 75	.215		D			2.04	1.71	Within	10	3.435	1.75	.213		E	_		.77	.85	WILLIAM	10	3.433				CV	_		2.59	2.13							. •	1		7	4								1		,									•				f digit four						Mean	56.00		58.28	59.00	Sex	1	2.677	1.33	.275		D	_		1.50	.82	Within	10	2.000				E	_		.57	.41							CV	_		2.57	1.39								1		7	4											Length o	of digit five						1ean	57.00		58.29	59.00	Sex	1	2.042	1.59	.237		D	_		1.25	.82	Within	10	1.288				E	_		.48	.41							CV	_		2.14	1.40								1		7	4											Tibia	length						1000	21.00		21.14			,	0.42	0.7	701		1ean	21.00		21.14	21.25	Sex	1	.042	.07	.791		D	_		.90	.50	Within	10	.563				E	_		.34	.25							.V	_ 1		4.26 7	2.35 4								1		/												Calca	r length						1ean	22.00		21.29	22.00	Sex	1	1.042	1.77	.213		D	_		.76	.82	Within	10	.588				E	_		.29	.41							:V	_		3.57	3.73								1		7	4											Greatest le	ngth of skull						1ean	15.80		15.97	15.70	Sex	1	.167	2.78	.127		D	_		.24	.27	Within	10	.060	2.70	.127		E	_		.09	.14	********		.000				- CV	_		1.50	1.72								1		7	4																		_					asal length						Aean D	15.10		15.44	15.30	Sex	1	.027	.36	.562		D	_		.30	.18	Within	10	.074				E	_		.11	.09							CV	_		1.94	1.18								l		7	4											Zygoma	tic breadth						A ean	9.60		9.70	9.60	Sex	1	.020	.89	.367		D	_		.18	.08	Within	10	.023		,		E	_		.07	.04		-					CV	_		1.86	.83										7	4						Table 5.—*Continued*.	_	Caatinga	Cerr				Analysis of varia				------------------------	-------------------	--------------	---------------	------------------------	---------	-------------------	------	--------------			\$\$ 99	<i>ే</i> .రే	φ	Factor	df	MS	F	Significance					D-stankita							Mean	4.00	4.04		constriction	1	024	2.01	076		Mean SD	4.00	4.04 .10	3.93 .10	Sex Within	1 10	.034	3.91	.076		SE	_	.04	.05	VV ILILIII	10	.009				CV	_	2.48	2.54							n	1	7	4								•	,		d breadth						Mean	9.50	9.54	9.40	Sex	1	050	1.60	222		SD	9.30	.18	.18	Within	1 10	.050 .030	1.69	.223		SE	_	.07	.09	** 1115111	10	.030				CV	_	1.89	1.91							n	1	7	4										Breadth o	f braincase						Mean	8.50	8.51	8.35	Sex	1	.707	3.54	.089		SD	-	.12	.19	Within	10	.020	3.54	.009		SE	_	.05	.10	** 1011111	10	.020				$\mathbb{C}\mathbf{V}$	_	1.41	2.28							n	1	7	4										Rostrai	breadth						Mean	5.10	5.21	5.13	Sex	1	.015	1.40	.265		SD	_	.12	.05	Within	10	.011		.205		SE	_	.05	.03							CV	_	2.30	.97							n	1	7	4										Height of	^c braincase						Mean	10.00	9.96	9.73	Sex	1	.150	3.70	.083		SD	_	.24	.15	Within	10	.041				SE	_	.09	.08							CV	-	2.41	1.54							n	1	7	4									Bi	readth across	the upper mola	rs					Mean	6.60	6.60	6.60	Sex	1	.000	0	1.000		SD	_	.14	.08	Within	10	.014				SE	_	.05	.04							CV	_	2.12	1.21							1	1	7	4							_	- • •			the upper canin		00.4	16	700		Mean	5.30	5.49	5.50	Sex	1	.004	.16	.700		SD	_	.15 .06	.16 .08	Within	10	.024				SE CV	_	2.73	2.91							n v	1	7	4								Ī			axillary toothre	aw.						7.00			=		020	62	.449		Mean SD	7.00	7.16 .21	7.05 .13	Sex Within	1 10	.020 .033	.62	.449		SE SE	_	.08	.07	** 1611111	10	.033				CV	_	2.93	1.84							n	1	7	4											molariform to	othrow					Mean	5.40	5.64	5.68	Sex	1	.010	.76	.402		Mean SD	J. 4 0	.05	.15	Within	10	.014	.,0	.702		SE	_	.02	.08	** 1411111						CV	_	.89	2.64							n	1	7	4						Table 5.—Continued.		Caati	nga	Сег	rado	,		Analysis of varia	ince			------------------------	-------	-----	----------	-----------------	-----------------	-----	-------------------	------	--------------			రేరే	ŞŞ	ీ	99	Factor	df	MS	F	Significance						Width of the	widest molar						Mean	1.90		1.87	1.93	Sex	1	.007	1.07	.326		SD	_		.08	.10	Within	10	.006				SE	_		.03	.05							$\mathbb{C}\mathbf{V}$	_		4.28	5.18							1	1		7	4										(Greatest length	of the mandib	le					Mean	12.70		12.69	12.70	Sex	1	.000	.01	.920		SD	_		.23	.16	Within	10	.039				SE	_		.09	.08							CV	_		1.81	1.26							n	1		7	4										Le	ngth of the mo	andibular tooth	row					Mean	7.40		7.54	7.50	Sex	1	.002	.14	.711		SD	_		.08	.14	Within	10	.012				SE	_		.03	.07							$\mathbb{C}\mathbf{V}$	_		1.06	1.87							ı	1		7	4											Length of the	coronoid proces	S					Mean	3.00		3.14	3.15	Sex	1	.002	.37	.556		SD	_		.05	.06	Within	10	.005				SE	_		.02	.03							$\mathbb{C}V$	_		1.59	1.90							n	1		7	4						characters, only tragus length exhibits statistically significant secondary sexual variation and no trend is evident when comparing female and male mean values. Nevertheless, the sample means for males are larger than those for females for 15 of the 16 cranial characters with differences in cranial characters statistically significant for mastoid breadth, width of the widest molar, length from the canine to the last molar in the mandible and length of the coronoid process. It appears then, that the sample means for males are consistently larger than those for females when cranial characters are considered but that similar trends are not apparent for external characteristics. The evidence from the Northeast of Brazil suggests the possibility of sexual dimorphism for M. m. megalotis, however, larger samples are required to make such a statement with complete statistical confidence. #### Micronycteris minuta (Gervais, 1856) Specimens in this monotypic species are listed as *Micronycteris* sp. by Mares et al. (1981). It is a foliage gleaning insectivore that was rare in the Caa- tingas, where it was most frequently caught near lajeiros or serrotes. *M. minuta* is also rare on the Chapada do Araripe. Measurements of *M. minuta* have not appeared frequently in the literature (see Swanepoel and Genoways, 1979); however, Dobson (1878), Andersen (1906), G. M. Allen (1908), and Cunha Vieira (1942) included Brazilian specimens in their work. The only comparative morphometric work on the species was done by Sanborn (1949); he suggested that Colombian specimens are smaller than specimens from Brazil, however, his analysis was not conclusive. The existence of sexual dimorphism was examined via the analysis of variance for specimens from the Northeast of Brazil. Specimens from the Caatingas and Chapada were combined due to small sample size and the results are shown in Table 7. None of the cranial characters and only two external characters exhibit statistically significant sexual variation. Because there is no apparent pattern in the relationship between male and female mean values either, there is little reason for considering specimens of *M. minuta* sufficiently dimorphic to war- Table 6.—Summary statistics for external and cranial characters (mean; standard deviation, SD; standard error of the mean, SE; coefficient of variation, CV; sample size, n) of Micronycteris megalotis males and females from both Caatinga and Cerrado biomes. Due to small sample sizes, data from both biomes were combined to determine the existence of significant (P < .050) secondary sexual variation via a one-way analysis of variance (Model I) with replication.		Caa	tinga	Cerra	ado		Analysis of vari	ance			------------------------	-------	-------	-------	---	-----	------------------	-------	--------------			రేరే	99	ేరే	çç Factor	df	MS	F	Significance																																																																																																																																																																																																																																																																																																																																																																																																																																																																																														
Total length						Mean	59.86	60.00	58.67	Sex	1	.714	.06	.805		SD	2.91	2.00	5.86	Within	12	11.208	.00			SE	1.10	1.00	3.38			,				$\mathbb{C}\mathbf{V}$	4.86	3.33	9.99							1	7	4	3											Tail length						Mean	13.57	13.00	14.67	Sex	1	2.314	.96	.346		SD	13.37	1.41	2.08	Within	12	2.408	.90	.540		SE	.53	.71	1.20	VV Ithini	12	2.400				CV	10.32	10.85	14.17							1	7	4	3								,	7	3											Hindfoot length						Mean	8.14	8.00	8.00	Sex	1	.029	.12	.737		SD	.38	0	1.00	Within	12	.242				SE	.14	0	.58							CV	4.67	0	12.50							1	7	4	3											Ear length						Mean	20.86	21.25	20.33	Sex	1	.864	2.14	.169		SD	.69	.50	.58	Within	12	.404				SE	.26	.25	.33							CV	3.31	2.35	2.85							1	7	4	3											Tragus length						Mean	7.57	6.75	8.00	Sex	1	2.579	10.86	.006		SD	.53	.50	0	Within	12	.238	10.80	.000		SE	.20	.25	Ö	***************************************	12	.230				CV	7.13	7.41	Ö							1	7	4	3								,	· ·		F										Forearm length						Mean	34.29	34.75	34.33	Sex	- 1	.579	1.01	.334		SD	.76	.50	1.16	Within	12	.571				SE	.29	.25	.67							CV	2.22	1.44	3.38							1	7	4	3											Weight						Mean	5.93	5.75	6.67	Sex	1	.457	.75	.402		SD	.54	.29	1.44	Within	12	.606				SE	.20	.14	.83							CV	9.11	5.04	21.59							1	7	4	3											Length of digit one						Mean	8.43	8.25	9.00	Sex	1	.350	1.33	.271		SD	.54	.50	0	Within	12	.263	1.55	.271		SE SE	.20	.25	0	** 1(11111	12	.203				CV	6.41	6.06	0							· •	7	4	3						Table 6.—Continued.		Caa	tinga	Ce	rrado		Analysis of vari	ance			----------	---------------	---------------	-------------	----------------------	--------	------------------	------	--------------				φφ		ρο Fac	or df	MS	F	Significance						I						Mean	61.00	(2.50	(2.67	Length of digit th		1 400	2.4	625		SD	61.00 2.00	62.50 1.00	63.67	Sex Wit	1	1.400	.24	.635		SE SE	.76	.50	3.79	WIL	nin 12	5.883				CV		1.60	2.19								3.28 7	4	5.95 3							n	/	4	3											Length of digit fo						Mean	46.57	46.75	47.00	Sex	1	.007	.00	.947		SD	1.40	1.26	1.00	Wit	nin 12	1.571				SE	.53	.63	.58							CV	3.01	2.70	2.13							n	7	4	3											Length of digit fi	ve					Mean	47.71	48.00	48.33	Sex	1	.029	.01	.918		SD	1.80	.82	2.08	Wit	nin 12	2.575				SE	.68	.41	1.20							CV	3.77	1.71	4.30							n	7	4	3											Tibia length						Mean	16.71	15.75	16.67	Sex	1	2.579	2.41	.147		SD	1.25	.50	1.16	With		1.071	2			SE	.47	.25	.67							CV	7.48	3.17	6.96							n	7	4	3											Calcar length						Mean	11.00	10.75	10.67	Sex	,	.064	10	756		SD	1.00	.50	.58	With	1		.10	.756		SE	.38	.25	.33	VV 1t1	nin 12	.638				CV	9.09	4.65	5.44							n	7.07	4.03	3								,	7	3	N. 1 Cl							6.40	7.00	7 00	Noseleaf length						Mean	6.42	7.00	7.00	Sex	1	.457	.86	.373		SD	.79	0	1.00	With	nin 12	.533				SE	.30	0	.58							CV	12.31 7	0 4	14.29 3							n	/	4	3											Greatest length of s	kull					Mean	18.18	17.73	18.17	Sex	1	.568	2.81	.122		SD	.44	.31	.70	With	nin 11	.202				SE	.18	.16	.41							CV	2.42	1.75	3.85							n	6	4	3											Condylobasal leng	th					Mean	16.17	15.58	16.20	Sex	1	1.006	4.49	.058		SD	.57	.13	.62	With		.224	,	.020		SE	.23	.06	.36							CV	3.53	.83	3.83							n	6	4	3											Zygomatic bread	h					Mean	8.88	8.67	8.90	Sex	1	.106	1.86	.206		SD	.33	.12	.17	With		.057	1.00	.200		SE	.15	.07	.10	** 161	,	.037					3.72	1.38	1.91							CV									Table 6.—*Continued*.		Caat	inga	Сегта	10		Analysis of varia					-----------------	------------	------------	-------	------------------------------	---------	-------------------	------	--------------	--			ేరే	ÇQ	రేదే	♀♀ Factor	df	MS	F	Significance							Postorbital constriction							Mean	3.85	3.78	3.77	Sex	1	.006	.30	.592			SD	.18	.05	.15	Within	10	.020					E	.07	.03	.09								CV	4.68	1.32	3.98								1	6	4	3												Mastoid breadth							Aean	8.54	8.33	8.70	Sex	1	.202	5.20	.046			SD	.17	.13	.30	Within	10	.039	5.20	.040			SE	.08	.06	.17	** 1011111	10	.037					CV	1.99	1.56	3.45								- ' 1	5	4	3								L	3	7	3	Droadth of brainsass								7.30	7.25	7.72	Breadth of braincase		0.42	1.02	224			Mean	7.38	7.35	7.63	Sex	1	.042	1.03	.334			SD	.16	.13	.25	Within	10	.041					SE	.07	.07	.15								CV	2.17	1.77	3.28								l	5	4	3												Rostral breadth							Mean	3.26	3.23	3.27	Sex	1	.004	.14	.711			SD	.13	.17	.23	Within	12	.024					SE	.05	.09	.13								CV	3.99	5.26	7.03								1	7	4	3												Height of braincase							Mean	9.48	9.35	9.43	Sex	1	.034	.44	.522			SD	.34	.24	.31	Within	11	.086					SE	.14	.12	.18								CV	3.59	2.57	3.29								ı	6	4	3											Br	eadth across the upper mola	ırs						Mean	6.02	5.85	5.93	Sex	1	.053	3.28	.097			SD	.08	.13	.21	Within	11	.016					SE	.03	.07	.12								CV	1.33	2.22	3.54								1	6	4	3											Bre	eadth across the upper canir	ies						Mean	3.15	3.20	3.17	Sex	1	.006	.49	.498			SD	.11	.12	.12	Within	11	.011					SE	.04	.06	.07	*** 1611111							CV	3.49	3.75	3.79								1	6	4	3								•	Ü	·		igth of the maxillary toothr	ow.						Maan	6.90	6.60	6.93	Sex	0w 1	.165	1.02	.333			Mean	6.80		.21	Within	12	.163	1.02	.555			SD	.55 .21	.08 .04	.12	YY IUIIII	12	.102					SE SV	8.09	1.21	3.03								CV 1	8.09 7	4	3.03								-	·	·		of the upper molariform to	othrow						Mean	5.73	5.50	5.97	Sex	i	.179	1.12	.310			SD	.54	.10	.15	Within	12	.159	1.12	.510			SE	.20	.05	.09	** 111111	12	.137						9.42	1.82	2.51								CV	Q/L/									Table 6.—Continued.		Caa	tinga	Сегг	ado	V		Analysis of vari	ance			------	------------	-------	-------	----------------	-----------------	-----	------------------	-------	--------------			ೆ ∂	99	ðð	99	Factor	df	MS	F	Significance						Width of the	e widest molar						Mean	1.69	1.55	1.73		Sex	l	.064	8.57	.013		SD	.09	.10	.06		Within	12	.008				SE	.03	.05	.03								CV	5.33	6.45	3.47								n	7	4	3											G	reatest length	h of the mandib	le					Mean	11.79	11.40	11.73		Sex	1	.391	2.93	.113		SD	.44	.18	.42		Within	12	.113				SE	.17	.09	.24								CV	3.73	1.58	3.58								n	7	4	3											Len	gth of the m	andibular tooth	row					Mean	7.50	7.18	7.50		Sex	1	.302	5.77	.033		SD	.29	.10	.20		Within	12	.052				SE	.11	.05	.12								CV	3.87	1.39	2.67								n	7	4	3											L	ength of the	coronoid proces	S					Mean	3.87	3.68	3.93		Sex	1	.132	10.13	.008		SD	.14	.05	.12		Within	12	.013				SE	.05	.03	.07								CV	3.62	1.36	3.05								n	7	4	3							Table 7.—Summary statistics for external and cranial characters (mean; standard deviation, SD; standard error of the mean, SE; coefficient of variation, CV; sample size, n) of Micronycteris minuta males and females from both Caatinga and Cerrado biomes. Due to small sample sizes, data from both biomes were combined to determine the existence of significant (P < .050) secondary sexual variation via a one-way analysis of variance (Model I) with replication.		Caa	tinga	Сегга	ndo			Analysis of varia	nce			------	-------------	-------	-------------	--------	------------	----	-------------------	-----	--------------			<i>దేదే</i>	φφ	<i>ే</i> దే	δδ	Factor	đf	MS	F	Significance				,	
Tota	l length						Mean	54.75	56.00	63.00		Sex	1	10.971	.70	.427		SD	.50	1.00	1.73		Within	8	15.679				SE	.25	.58	1.00								CV	.91	1.79	2.74								n	4	3	3												Tail	length						Mean	11.25	12.00	12.33		Sex	1	.171	.12	.738		SD	.96	1.00	1.53		Within	8	1.429				SE	.48	.58	.88								CV	8.53	8.33	12.41								n	4	3	3												Hindfo	oot length						Mean	8.50	8.67	8.67		Sex	1	.019	.06	.807		SD	.58	.58	.58		Within	8	.298				SE	.29	.33	.33								CV	6.82	6.70	6.69								n	4	3	3							Table 7.—Continued.		Caa	tinga	Cerr	ado		Analysis of varia	ince			------	-------	-------	---------	-----------------------	--------	-------------------	------	--------------				99	<i></i>	99 Factor	df	MS	F	Significance						E 1 1						_				Ear length		.7.	20	(10		Mean	18.50	19.33	26.00	Sex	1	.476	.28	.610		SD	1.00	.58	4.58	Within	8	1.691				SE	.50	.33	2.65							CV	5.41	3.00	17.62							n	4	3	3											Tragus length						Mean	7.00	7.00	7.00							SD	0	0	0							SE	0	0	0							CV	0	0	0							n	4	3	3											Forearm length						Mean	32.75	34.00	34.00	Sex	1	1.071	1.15	.314		SD	.96	0	1.00	Within	8	.929				SE	.48	0	.58							CV	2.93	0	2.94							n	4	3	3											Weight						Mean	5.75	6.83	5.67	Sex	1	2.630	5.85	.042		SD	.29	1.26	.29	Within	8	.449	5.05	.042		SE	.14	.73	.17	VV I(IIIII	0	.442				CV	5.04	18.45	5.11							n	4	3	3							11	7	3	,	T all of Pair										Length of digit one	_	(0)	2.20			Mean	6.25	7.00	6.67	Sex	1	.686	3.20	.111		SD	.50	0	.58	Within	8	.214				SE	.25	0	.33							CV	8.00	0	8.70							n	4	3	3											Length of digit three						Mean	54.50	57.33	56.67	Sex	i	7.619	2.99	.122		SD	.58	2.31	.58	Within	8	2.548				SE	.29	1.33	.33							CV	1.06	4.03	1.02							n	4	3	3											Length of digit four						Mean	41.50	43.33	42.67	Sex	1	3.733	1.45	.264		SD	1.29	2.52	.58	Within	8	2.583				SE	.65	1.45	.33							CV	3.11	5.82	1.36							n	4	3	3											Length of digit five						Mean	41.50	44.00	42.67	Sex	1	8.400	5.60	.046		SD	1.00	1.73	.58	Within	8	1.500				SE	.50	1.00	.33							CV	3.77	3.93	1.36							n	4	3	3											Tibia length) (15.00	15.22	16.00		1	.019	.02	.896		Mean	15.00	15.33	16.00	Sex	1 8	1.048	.02	.070		SD	.82	1.16	1.00	Within	0	1.040				SE	.41	.67	.58							CV	5.47	7.57	6.25							n	4	3	3						Table 7.—Continued.			tinga		rrado		Analysis of vari				------------------------	------------	------------	------------	--------------------------------	--------	------------------	------	--------------			ే	ŞŞ	ేదే	99 Factor	df	MS	F	Significance						Calcar length						Mean	8.75	9.00	9.67	Sex	1	.043	.04	.849		SD	.96	1.00	1.16	Within	8	1.107				SE	.48	.58	.67							CV	10.97	11.11	12.00							n	4	3	3											Noseleaf length						Mean	5.25	5.33	5.33	Sex	1	.005	.02	.896		SD	.50	.58	.58	Within	8	.262				SE	.25	.33	.33							CV	9.52	10.88	10.88							n	4	3	3											Greatest length of skull						Mean	16.80	16.77	16.95	Sex	1	.014	.12	.735		SD	.41	.32	.21	Within	7	.112				SE	.20	.19	.15							CV	2.44	1.91	1.24							1	4	3	2											Condylobasal length						Mean	14.83	14.93	15.00	Sex	1	.005	.10	.763		SD	.29	.15	.14	Within	7	.051				SE	.14	.09	.10							$\mathbb{C}\mathbf{V}$	1.96	1.00	.93							1	4	3	2											Zygomatic breadth						Mean	7.93	8.10	8.00	Sex	1	.030	4.00	.116		SD	.96	.14	_	Within	4	.008				SE	.03	.10	_							CV 1	.76 3	1.73 2	_ 1								3	2	1	Describing Landing to the con-							2.75	• • • •		Postorbital constriction						Mean	3.75	3.90	4.03	Sex	1	.002	.05	.835		SD SE	.17 .09	.17 .10	.06 .03	Within	8	.037				CV	4.53	4.36	1.49							1	4	3	3									-		Mastoid breadth						Mean	8.15	8.18	8.40	Masioia breadin Sex	1	.009	10	672		SD	.24	.15	.14	Sex Within	1 7	.009	.19	.673		SE	.12	.09	.10	** 1611111	,	.040				CV	2.94	1.84	1.67							1	4	3	2											Breadth of braincase						Mean	7.25	7.23	7.40	Sex	1	.005	.18	.685		SD	.13	.21	.14	Within	7	.028	.10	.005		SE	.06	.12	.10	** 1611111	,	.520				CV	1.79	2.90	1.89							1	4	3	2											Rostral breadth						Mean	2.98	2.90	3.03	Sex	1	.021	4.20	.075		SD	.05	.10	.06	Within	8	.005	0	.075		SE	.03	.06	.03							CV	1.68	3.45	1.98							n	4	3	3						Table 7.—*Continued*.	_	Caat	tinga	Ce	rrado	_		Analysis of varia	nce			----------	----------	-------	------------	----------------	-------------------	--------	-------------------	------	--------------			ೆ	99	<i></i>	99	Factor	df	MS	F	Significance						Height (of braincase						Mean	8.90	8.93	8.90		Sex	1	.002	.04	.838		SD	.29	.21	0		Within	7	.050	.04	.030		SE	.15	.21	0		VV ILIIIII	,	.030				CV	3.26	2.35	0								1	4	3	2								.1	4	3													Breadth across	the upper mola	rs					Mean	5.03	5.07	5.27		Sex	1	.008	.46	.518		SD	.05	.06	.12		Within	8	.018				SE	.03	.03	.07								CV	.99	1.18	2.28								n	4	3	3												Breadth across	the upper canin	es					Mean	2.73	2.67	2.87		Sex	1	.030	2.50	.153		SD	.05	.06	.15		Within	8	.012				SE	.03	.03	.09			_					CV	1.83	2.25	5.23								n	4	3	3												anoth of the	navillam toothu	2141							- 0-		ængin oj ine r	naxillary toothro		01.5		0.53		Mean	5.75	5.97	5.73		Sex	1	.015	5.14	.053		SD	.06	.25	.12		Within	8	.021				SE	.03	.15	.07								CV	1.04	4.19	2.09								n	4	3	3											Leng	th of the uppe	r molariform too	othrow					Mean	4.88	4.90	4.90		Sex	1	.000	.03	.863		SD	.10	.17	.10		Within	8	.014				SE	.05	.10	.06								CV	2.05	3.47	2.04								n	4	3	3												Width of th	ne widest molar						Mean	1.38	1.43	1.33		Sex	1	.012	4.10	.078		SD	.05	.06	.06		Within	8	.003	4.10	.076		SE	.03	.03	.03		** 1611111	o	.003				CV	3.62	4.20	4.51								n .	4	3	3								11	•	5			1 6.1 12	,									Greatest lengt	h of the mandibi	le					Mean	10.43	10.43	10.47		Sex	1	.000	.02	.896		SD	.10	.06	.15		Within	8	.011				SE	.05	.03	.09								CV	.96	.58	1.43								n	4	3	3											L	ength of the n	iandibular toothi	row					Mean	6.28	6.27	6.05		Sex	1	.009	.27	.617		SD	.17	.12	.21		Within	7	.032				SE	.09	.07	.15								CV	2.71	1.91	3.47								n	4	3	2												Length of the	coronoid proces						Macn	2.05	2.10	2 27	Length of the			.004	.26	.622		Mean	3.05	3.10	3.27		Sex Within	1 8	.004	.20	.022		SD se	.06	.10	.06 .03		vv 1111111	0	.013				SE	.03	.06									CV	1.97	3.23	1.83								n	4	3	3							rant analyzing males and females separately in future analyses. ### Tonatia bidens (Spix, 1823) T. b. bidens is the only extant subspecies currently recognized (Jones and Carter, 1976). This foliage gleaning insectivore was rare in the Caatingas where it was only captured on serrotes; it was apparently absent from the Chapada do Araripe. Few mensural data are reported in the literature for *T. bidens*. Dobson (1879), Lima (1926), Sanborn (1936), Cunha Vieira (1942), and Goodwin (1942) reported measurements from Brazilian specimens. Only selected measurements (after Swanepoel and Genoways, 1979) are reported here for the two adult males and one adult female captured in the Caatingas (total length, 85, 96, 93; tail length, 18, 19, 18; hindfoot length, 14, 14, 13; ear length, 32, 30, 33; greatest length of skull,																																	
27.4, 27.3, 27.1; condylobasal length, 24.1, 23.1, 23.6; zygomatic breadth, 14.3, 14.0, 14.0; postorbital constriction, 5.7, 5.3, 5.2; breadth of braincase, 11.0, 10.7, 10.7; length of the maxillary toothrow, 9.8, 9.8, 9.5; breadth across the upper molars, 8.6, 8.8, 8.5). ### Tonatia brasiliense (Peters, 1866) Jones and Carter (1976) consider *T. brasiliense* to be monotypic; however, if one includes specimens of *T. venezuelae*, *T. minuta*, and *T. nicaraguae* within this taxon as is frequently done (Gardner, 1976; Koopman, 1978), then the species is, no doubt, polytypic. It was uncommon in the Caatingas but was consistently captured on serrotes or in Caatinga Alta habitats. *T. brasiliense* was absent from all habitats on Chapada do Araripe. Most of the recorded measurements for T. brasiliense were derived from Peters (1866) original description of the holotype. Goodwin (1942) presented data on two more specimens from Brazil and Gardner (1976) presented data on two additional specimens from Peru. Samples from the Caatingas are too small to allow statistical analyses, therefore data are reported here on a selected set of mensural characters (after Swanepoel and Genoways, 1979). The first figure represents the mean value derived from six adult females, whereas the second figure represents the mean value derived from two adult males (total length, 69.8, 75.0; tail length, 9.2, 11.0; hindfoot length, 9.8, 10.0; ear length, 23.8, 22.0; greatest length of skull, 20.44, 19.95; condylobasal length, 17.86, 17.40; zygomatic breadth, 10.30, 9.95; postorbital constriction, 3.23, 3.25; breadth of braincase, 8.42, 8.25; length of maxillary toothrow, 8.18, 8.10; breadth across the upper molars, 6.62, 6.45). #### Tonatia silvicola (D'Orbigny, 1836) Two subspecies are currently recognized in this taxon; T. s. laephotis is the designation appropriate for specimens from northeastern Brazil (Jones and Carter, 1976). This foliage gleaning insectivore is absent from the Chapada do Araripe, and its occurrence in the Caatingas was primarily restricted to serrotes. All but three of the specimens from the Northeast of Brazil listed by Mares et al. (1981) as T. bidens were actually T. silvicola. Based upon netting records for adult specimens from the duration of this study, the sex ratio was not equal in this species (Bionomial test, P < .05); approximately 30% of the 47 captured adult individuals were males. Swanepoel and Genoways (1979) summarized the sources of recorded measurements for T. silvicola; Peters (1865), Dobson (1878), Cunha Vieira (1942), and Goodwin (1942) are noteworthy in that listing because they have included Brazilian specimens in their work. Statistical analyses of individual variation have not been done nor has the existence of sexual dimorphism been considered in the literature. Samples are sufficiently large from the Caatingas to determine individual variation and ascertain with confidence the degree of sexual dimorphism present in a population of T. silvicola. The results of the statistical analysis are presented in Table 8. The sample means for males are larger than the sample means for females for 24 of the 30 characters examined. Statistically significant secondary sexual variation is revealed for two external characters (ear length and weight) and six cranial characters (greatest length of skull, condylobasal length, zygomatic breadth, mastoid breadth, height of the braincase, and length in the mandible from the canine to the last molar). Statistical significance is not found in the variables that had larger sample mean values for females. T. silvicola is clearly dimorphic for cranial characters with males larger than females. ### Mimon crenulatum (E. Geoffroy, 1819) Jones and Carter (1976) recognize four subspecies in this taxon, whereas Koopman (1978) includes a fifth form. In either case, *M. c. crenulatum* is the designation properly applied to specimens from northeastern Brazil. This foliage gleaning insectivore was found exclusively in Caatinga Alta habitats. A paucity of data exists concerning the morphometrics of *M. crenulatum* (see Swanepoel and Gen- Table 8.—Summary statistics for external and cranial characters (mean; standard deviation, SD; standard error of the mean, SE; coefficient of variation, CV; sample size, n) of Tonatia silvicola males and females from the Caatinga biome. A one-way analysis of variance (Model I) with replication is presented for each character. The existence of significant secondary sexual variation is indicated by P values less than or equal to .050.		Caat		Сетгадо			Analysis of varia				------	-------------	-------	----------	---	---------	-------------------	------	--------------			<i>ే</i> రే	ŞΦ	đđ ÇÇ	Factor	df	MS	F	Significance					Tota	l length						Mean	97.85	97.58		Sex	I	.660	.07	.799		SD	3.34	3.12		Within	47	10.095	.07	.,,,		SE	.93	.52		** 1611111	77	10.073				CV	3.41	3.20								n	13	36								11	13	30											Tail	length						Mean	17.69	17.69		Sex	1	.000	.00	.998		SD	2.50	2.04		Within	47	4.690				SE	.69	.34								CV	14.13	11.53								n	13	36											Hindfe	ot length									Птиус			0.60		7.47		Mean	14.62	14.69		Sex	I 17	.060	.11	.747		SD	.51	.82		Within	47	.568				SE	.14	.14								CV	3.49	5.58								n	13	36											Ear	length						Mean	29.62	28.81		Sex	1	6.264	7.60	.008		SD	1.12	.82		Within	47	.824	7.00	.000		SE	.31	.14		***************************************	77	.024				CV	3.78	2.85								n	13	36									13	30											Tragu	is length						Mean	11.69	11.86		Sex	1	.272	.28	.597		SD	1.38	.80		Within	47	.959				SE	.38	.13								CV	11.80	6.74								n	13	36											Forear	m length						Mean	58.23	57.58	1 0.00	Sex	I	4.004	3.30	.076		SD	1.42	.97		Within	47	1.214	3.30	.070		SE	.40	.16		VV I CIIIIII	4/	1.214				CV	2.44	1.68									13	36								n	13	30											H'	eight						Mean	33.85	31.79		Sex	I	40.314	5.06	.029		SD	3.07	2.73		Within	47	7.966				SE	.85	.46								CV	9.07	8.59								n	13	36											Lanath	of digit one									Lengin (2.2	(35		Mean	15.08	14.94		Sex	1	.168	.23	.637		SD	.76	.89		Within	47	.741				SE	.21	.15								CV	5.04	5.96								n	13	36							Table 8.—Continued.	Mean SD SE CV	106.54 2.63	φφ	88	errado çç	Factor	df	Analysis of var	F	0' '6		------------------------	----------------	------------	----	-----------------	------------	-----	-----------------	-------	--------------		SD SE CV	106.54			**	1 actor						SD SE CV								•	Significance		SD SE CV				Length of di	git three						SE CV	2.63	106.00			Sex	1	2.769	.65	.423		CV		1.82			Within	47	4.239					.73	.30									n	2.47	1.72										13	36													Length of di	igit four						Mean	80.46	79.81			Sex	1	4.110	1.26	.267		SD	2.37	1.56			Within	47	3.253	1.20	.207		SE	.66	.26				• •	3.233				CV	2.95	1.95									n	13	36													I awath of d	: .:4 £							000			Length of di							Mean	81.39	80.47			Sex	1	7.951	3.06	.087		SD	2.40	1.23			Within	47	2.597				SE	.67	.21									CV	2.95	1.53									n	13	36													Tibia len	igth						Mean	27.08	27.25			Sex	1	.286	.25	.619		SD	1.66	.77			Within	47	1.142	.20	.019		SE	.46	.13									CV	6.13	2.83									n	13	36													Calcar lei	n at h						Mean	10 54	17.70		Calcar lei			5.535	2.2.5			SD	18.54 1.33	17.78			Sex	1	5.527	3.35	.073		SE		1.27			Within	47	1.648				CV	.37 7.17	.21									n	13	7.14 36									11	13	30													Noseleaf le	ength						Mean	6.54	6.33			Sex	1	.402	1.68	.201		SD	.52	.48			Within	47	.239				SE	.14	.08									CV	7.95	7.58									n	13	36													Greatest length	h of skull						Mean	27.80	27.32				1	2.180	7.02	007		SD	.54	.52			Within	47	.275	7.93	.007		SE	.15	.09			** 1111111	47	.273				CV	1.94	1.90									n	13	36													0 111											Condylobasai							Mean	24.31	23.84			Sex	1	2.050	14.56	<.001		SD	.50	.32			Within	47	.141				SE	.14	.05									CV	2.06	1.34									n	13	36													Zygomatic b	readth						Mean	13.68	13.47			Sex	1	.412	6.82	.012		SD	.24	.25			Within	45	.060				SE	.07	.04									CV	1.75	1.86									n	13	34								Table 8.—Continued.		Caat	inga	Cer	rrado	_		Analysis of varia				------------------------	--------------	-------------	------	------------------	------------------------																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																									
--------	-------------------	------	--------------			<i>దే</i> దే	φφ	ేరే	QQ	Factor	df	MS	F	Significance						Postorbital	constriction						Mean	6.00	6.00			Sex	1	.000	.00	.967		SD .	.15	.22			Within	47	.042	.00	.,,,,,		E	.04	.04				• • •					CV	2.50	3.67									1	13	36													Mastoio	d breadth						Mean	13.49	13.27		111431014	Sex	1	.454	7.42	.009		SD	.20	.26			Within	46	.061	1.42	.009		SE	.05	.05			VV ICIIIII	40	.001				CV	1.48	1.96									1	13	35									•	10			Dura dela co	C b						_				Breaath 0	f braincase		0.13	0.2	2.42		Mean	11.03	11.10			Sex	1	.042	.92	.343		SD	.19	.22			Within	47	.046				SE	.05 1.72	.04 1.98									CV 1	13	36										13	30		ъ	1.1										Kostrai	breadth		0.45		20.		Mean	5.99	5.92			Sex	1	.047	1.68	.201		SD	.19	.16			Within	47	.028				SE	.05	.03									CV	3.17	2.70 36									1	13	30													Height of	^c braincase						Mean	13.96	13.73			Sex	1	.534	6.65	.013		SD	.32	.27			Within	47	.080				SE	.09	.05									CV	2.29	1.97									1	13	36												I	Breadth across i	the upper mola	irs .					Mean	8.90	8.84			Sex	1	.030	.89	.349		SD	.22	.17			Within	47	.033				SE	.06	.03									CV	2.47	1.92									1	13	36												E	Breadth across t	he upper canin	ies					Mean	6.12	6.05			Sex	1	.055	2.00	.164		SD	.15	.17			Within	47	.028				SE	.04	.03									$\mathbb{C}\mathbf{V}$	2.45	2.81									n	13	36												L	ength of the m	axillary toothr	ow					Mean	10.12	10.03			Sex	1	.092	3.69	.061		SD	.21	.14			Within	47	.025				SE	.06	.02									$\mathbb{C}\mathbf{V}$	2.08	1.40									1	13	36												Leng	th of the upper		othrow					Mean	7.96	7.93			Sex	1	.011	.45	.507		SD	.16	.15			Within	47	.024				SE	.04	.03									CV	2.01	1.89									n	13	36								Table 8.—Continued.		Caa	tinga	Cer	тado			Analysis of varia	ance			------	-------------	-------	----------	-----------------	-----------------	-----	-------------------	------	--------------			<i>ే</i> రే	φç	ే	99	Factor	df	MS	F	Significance						Width of th	e widest molar						Mean	2.42	2.45			Sex	1	.010	1.12	.296		SD	.10	.09			Within	47	.009				SE	.03	.02									CV	4.13	3.67									n	13	36												(Greatest length	h of the mandib	le					Mean	18.10	17.98			Sex	1	.130	1.33	.256		SD	.34	.31			Within	47	.098				SE	.09	.05									CV	1.88	1.72									n	13	36												Lei	ngth of the m	andibular tooth	row					Mean	11.29	11.09			Sex	1	.366	6.16	.017		SD	.22	.25			Within	47	.059				SE	.06	.04									CV	1.95	2.25									n	13	36												I	Length of the	coronoid proces	S					Mean	7.35	7.25			Sex	1	.098	2.27	.139		SD	.21	.21			Within	47	.043				SE	.06	.03									CV	2.86	2.90									n	13	36								oways, 1979). Peters (1866), Dobson (1878), Thomas (1903), Cunha Vieira (1942), and Handley (1960) included specimens from Brazil in their work, but statistical analyses were not attempted. Samples from the Caatingas are sufficiently large to perform statistical analyses; the results are shown in Table 9. Only a single character, eondylobasal length, exhibits statistically significant secondary sexual variation and trends in the relationship of male and female mean values could not be detected for the other variables. The data cannot substantiate the presence of sexual dimorphism in the Caatingas population of *M. c. crenulatum*, but this failure may be due to small sample sizes. #### Phyllostomus discolor (Wagner, 1843) Power and Tamsitt (1973) recently suggested that *P. discolor* is a monotypic species because there is little morphometric basis for distinguishing between the two presently recognized subspecies. In keeping with current usage, however, *P. d. discolor* is the appropriate appellation for populations east of the Andes (Jones and Carter, 1976) and would thus apply to specimens from northeastern Brazil. Although primarily frugivorous, at least part of the year P. d. discolor consumed nectar, pollen, flower parts, and insects; thus, it should be considered omnivorous. Based upon pollen loads from Cerrado specimens, P. d. discolor was an important pollinator of Caryocar coriaceum. In fact, the number of captured specimens of this species increased fourfold during months when C. coriaceum flowered; this strongly suggests recruitment from surrounding areas as preferred resources became abundant on the Chapada. P. d. discolor was widespread and abundant on the Chapada do Araripe but restricted for the most part to banana and mango orchards in the Caatingas. Thirty-eight percent of the 26 captured adult specimens from the Caatingas were males; similarly, 36% of the 180 captured adult specimens from the Chapada do Araripe were males. In the Cerrado, P. d. discolor exhibited a significantly unequal sex ratio (Binomial Test, P < .01). Samples from the Caatingas failed to exhibit a significantly unequal sex ratio (Binomial Test, P > .05), but this may be attributed in part to the small sample size available from this study. Numerous authors have reported measurements for P. discolor (see Swanepoel and Genoways, 1979) but only Peters (1865), Cunha Vieira (1942), Power and Tamsitt Table 9.—Summary statistics for external and cranial characters (mean; standard deviation, SD; standard error of the mean, SE; coefficient of variation, CV; sample size, n) of Mimon crenulatum males and females from the Caatinga biome. A one-way analysis of variance (Model I) with replication is presented for each character. The existence of significant secondary sexual variation is indicated by P values less than or equal to .050.		Caa	tinga	Сегта	do			Analysis of varia	nce			--------------	-----------	-------	-------------	----------	-------------	----	-------------------	------	--------------			ేం	99	ೆ ವೆ	φç	Factor	df	MS	F	Significance						Total	length						Mean	79.00	84.50			Sex	1	51.857	3.99	.102		SD	4.36	3.00			Within	5	13.000				SE	2.52	1.50				_	101000				CV	5.52	3.55									1	3	4										3	7		T '1	1 .1										I aii i	length						A ean	23.00	22.00			Sex	1	1.714	.36	.616		SD	1.73	2.45			Within	5	4.800				E	1.00	1.23									CV	7.52	11.14										3	4													Hindfoo	ot length						Mean	10.00	9.75			Sex	1	.107	.71	.437		SD	0	.50			Within	5	.150	*			SE .	Ö	.25									CV	Ö	5.13									1	3	4													Ear	lanath							• • • • •			Earl	length				***		1ean	26.00	26.50			Sex	l	.429	2.14	.203		D	0	.58			Within	5	.200				E	0	.29									CV	0	2.19									1	3	4													Tragus	s length						Aean	11.67	11.25			Sex	1	.298	.16	.707		D	1.53	1.26			Within	5	1.883				SE .	.88	.63									CV	13.11	11.20									1	3	4													Foreari	n length						1ean	45.00	46.75			Sex	1	5.250	5.53	.066		SD	1.00	.96			Within	5	.950				E	.58	.48									CV	2.22	2.05									1	3	4													W	eight								25		VV 6			200	1.05	252		Mean	11.67	11.25			Sex	1	.298	1.05	.352		SD	.58	.50			Within	5	.283				SE	.33	.25									CV	4.97	4.44									n	3	4													Length o	f digit one						Mean	8.67	8.75			Sex	1	.012	.02	.900		SD	.58	.96			Within	5	.683				SE	.33	.48									CV	6.69	10.97									n	3	4																			Table 9.—Continued.		Caa	tinga	Сеттаdо			Analysis of vari	ance			------	-------------	----------	-----------------	---	----	------------------	-------	--------------			<i>ే</i> దే	φŷ	ðô 99	Factor	df	MS	F	Significance				-	Length of dig	it three						Mean	93.67	92.50		Sex	1	2.333	.13	.733		SD	6.03	2.38		Within	5	17.933	.13	.733		SE	3.48	1.19		***************************************	3	17.755				CV	6.44	2.57								n	3	4									,	T	1							M	65.22	66.00	Length of di	-		7.0	2.5			Mean	65.33	66.00		Sex	1	.762	.26	.632		SD	2.52	.82		Within	5	2.933				SE	1.45	.41								CV	3.86	1.24								n	3																																																																																																																																																																																																																																																																																																																																																																																															
4											Length of di	git five						Mean	62.33	65.00		Sex	1	12.191	1.87	.230		SD	3.06	2.16		Within	5	6.533				SE	1.76	1.08								CV	4.91	3.32								n	3	4											Tibia len	gth						Mean	21.00	21.50		Sex	1	.429	.71	.437		SD	1.00	.58		Within	5	.600	.,1	.457		SE	.58	.30		** ********	3	.000				CV	4.76	2.70								n	3	4										·		. 1									Calcar ler							Mean	19.67	21.00		Sex	1	3.048	.57	.484		SD	.58	2.94		Within	5	5.333				SE	.33	1.47								CV	2.95	14.00								n	3	4											Noseleaf le	ngth						Mean	15.67	13.75		Sex	1	6.298	2.76	.158		SD	2.08	.96		Within	5	2.283				SE	1.20	.48								CV	13.27	6.98								n	3	4											Greatest length	of skull						Mean	19.93	20.10			1	.048	1.05	.352		SD	.21	.22		Within	5	.045	1.05	.332		SE	.12	.11		VV ILITIII	3	.043				CV	1.05	1.09								n	3	4									,	T											Condylobasal							Mean	17.53	18.10		Sex	1	.551	21.73	.006		SD	.25	0		Within	5	.025				SE	.15	0								CV	1.43	0								n	3	4											Zygomatic b	readth						Mean	11.53	11.45		Sex	1	.012	.20	.673		SD	.25	.24		Within	5	.059				SE	.15	.12								CV	2.17	2.10									3	4							Table 9.—Continued.		Caa	tinga	Се	rrado			Analysis of varia	nce			------------------------	-------------	-------------	------	--------------------	-----------------	--------	-------------------	-------	--------------			ి	QQ	88	ŞĞ	Factor	df	MS	F	Significance						Postorbitał co	onstriction						Mean	4.00	3.90			Sex	1	.017	.48	.521		SD	.27	.12			Within	5	.036				SE	.15	.06									CV	6.75	3.08									า	3	4													Mastoid b	readth						Mean	11.30	11.30			Sex	1	.000	0	1.000		SD	.20	.20			Within	5	.040				SE	.12	.10									$\mathbb{C}\mathbf{V}$	1.77	1.77									ı	3	4													Breadth of b	oraincase						Mean	7.97	7.98			Sex	1	.000	.00	.950		SD	.21	.13			Within	5	.027				SE	.12	.06									$\mathbb{C}\mathbf{V}$	2.63	1.63									1	3	4													Rostrał b	readth						Mean	5.03	4.88			Sex	1	.043	2.28	.191		SD	.15	.13			Within	5	.019				SE	.09	.06									CV	2.98	2.66									1	3	4													Height of b	raincase						Mean	11.07	10.90			Sex	l	.048	2.75	.158		SD	.12	.14			Within	5	.017				SE	.07	.07									CV	1.08	1.28									1	3	4												I	Breadth across the		rs					Mean	8.13	7.93			Sex	1	.074	1.36	.297		SD	.31	.17			Within	5	.055				SE	.18	.09									CV	3.81	2.14 4									1	3	4	_											I	Breadth across the		es					Mean	4.97	4.78			Sex	l	.063	4.25	.094		SD	.15	.10			Within	5	.015				SE CV	.09 3.02	.05 2.09									n.	3.02	4									•	3	•	,	anoth of the	sillams to atte	2141						7.12	7.15	I	Length of the max			000	1.4	721		Mean	7.13	7.15			Sex Within	1 5	.000 .003	.14	.721		SD SE	.06 .03	.06 .03			vv Itillii	3	.003				CV	.84	.84									n .	3	4										-		Lono	th of the upper m	olariform to	othrow					Mear	5.73	5.83	Leng	an of the upper n	Sex	1	.014	.76	.422		Mean SD	.21	.05			Sex Within	5	.014	. / U	.422		SE	.12	.03			** 1011111	,	.017				CV	3.66	.86									n	3	4								Table 9.—Continued.		Caa	tinga	Сег	rado			Analysis of varia	ance			------------------------	-------	-------	-----	-----------------	------------------	-----	-------------------	------	--------------			ðð	QQ	ð₫	QQ	Factor	df	MS	F	Significance						Width of the	e widest molar						Mean	2.23	2.33			Sex	1	.014	2.11	.206		SD	.06	.10			Within	5	.007				SE	.03	.05									CV	2.69	4.29									n	3	4												6	Greatest length	of the mandibi	le					Mean	12.83	13.03			Sex	1	.063	1.24	.316		SD	.29	.17			Within	5	.051				SE	.17	.09									$\mathbb{C}\mathbf{V}$	2.26	1.30									n	3	4												Lei	ngth of the m	andibular toothi	·ow					Mean	7.93	7.68			Sex	1	.114	6.07	.057		SD	.15	.13			Within	5	.019				SE	.09	.06									$\mathbb{C}\mathbf{V}$	1.89	1.69									n	3	4												1	Length of the	coronoid proces.	S					Mean	4.13	4.18			Sex	1	.003	.06	.811		SD	.25	.19			Within	5	.047				SE	.15	.10									CV	6.05	4.55									n	3	4								(1973), and Taddei (1975a) considered Brazilian specimens in their work. Valdez (1970) was unable to detect statistically significant secondary sexual variation in specimens of P. discolor utilizing univariate procedures on a number of morphometric characters. A multivariate analysis of variance on samples drawn from throughout the range of P. discolor has indicated strong sexual dimorphism while the subsequent use of discriminant function analysis indicated that mastoid breadth and to a lesser extent zygomatic breadth are important characters in distinguishing between the sexes (Power and Tamsitt, 1973). These authors cautioned, however, that the differences between males and females are not simply explained by size differentials but rather include subtle considerations of shape not detectable by univariate methods alone. In samples restricted to southwestern São Paulo, Taddei (1975a) found males larger on the average than females for 17 external characters and 15 cranial characters. Statistically significant secondary sexual variation was found in breadth across the canines, breadth across the molars, zygomatic width, mastoid breadth, cranial depth, ear length, length of the second phalanx in digit III and length of the second phalanx in digit V. Strong sexual dimorphism is indicated by these results with males consistently larger than females. The results of univariate analysis of 30 external and cranial characters on specimens from the Northeast of Brazil are shown in Table 10. Statistically significant geographic variation is observed in two cranial and two external characters (hindfoot length, length of digit IV, breadth of braincase, and length of the coronoid process). A consistent pattern for mean values is not evident-Caatingas populations have larger sample means than Cerrado populations for six characters, yet Cerrado populations have larger sample means than Caatingas populations for seven eharacters. In contrast, strong sexual dimorphism is evident. Males have larger sample means than females for eight external and eight cranial characters. Two external and nine cranial characters (forearm length, length of digit one, greatest length of skull, condylobasal length, mastoid breadth. breadth across the braincase, breadth across the upper molars, length of the maxillary tooth row, length Table 10.—Summary statistics for external and cranial characters (mean; standard deviation, SD; standard error of the mean, SE; coefficient of variation, CV; sample size, n) of Phyllostomus discolor males and females from both Caatinga and Cerrado biomes. A two-way analysis of variance (Model I) with replication is presented for each character. The existence of significant secondary sexual or geographic variation is indicated by P values less than or equal to .050.		Caat	inga	Cerr	ado			Analysis of varia				--------------	----------	-------	-------	----------	--------------------------------	--------	-------------------	------	--------------			<u> </u>	99	88	φφ	Factor	df	MS	F	Significance						Total	length						⁄Iean	96.30	98.31	98.50	98.70	Area	1	25.505	2.28	.136		SD	4.08	3.14	3.58	2.83	Sex	1	18.648	1.67	.201		SE .	1.29	.78	.80	.63	$A \times S$	1	12.515	1.12	.294		CV	4.24	3.19	3.63	2.87	Error	62	11.173	1.12	.2)4		· ·	10	16	20	20	LITOI	02	11.173				· _	10	10	20													length		7.726	201	0.7.2		1ean	14.90	15.13	14.65	14.05	Area	1	7.736	3.91	.052		D	1.66	1.31	1.47	1.28	Sex	1	.288	.15	.704		E	.53	.33	.33	.29	$A \times S$	1	2.002	1.01	.318		CV	11.14	18.66	10.10	9.11	Error	62	1.977					10	16	20	20											Hindfo	ot length						I ean	13.20	13.19	13.70	13.45	Area	1	2.215	4.14	.046		D	.79	.66	.73	.76	Sex	1	.263	.49	.486		E	.25	.16	.16	.17	$A \times S$	1	.215	.40	.529		CV	5.98	5.00	5.33	5.65	Error	62	.535				1	10	16	20	20																																																																																																																																																																																																																																																																																																																																																																																																																																																																													
											length						1	21.60	21.12	20.80		_	1	060	0.2	.863		/Iean	21.60	21.13	20.80	21.80	Area	1	.060	.03			D	1.35	1.15	1.15	1.80	Sex	1	1.050	.53	.469		E	.43	.29	.26	.40	$\mathbf{A} \times \mathbf{S}$	1	8.288	4.19	.045		CV	6.25	5.44	5.53	8.26	Error	62	1.977				ı	10	16	20	20											Tragu	s length						1 ean	8.90	8.81	9.05	9.00	Area	1	.434	.78	.379		D	.74	.91	.61	.73	Sex	1	.072	.13	.719		E	.23	.23	.14	.16	$A \times S$	1	.005	.01	.922		V	8.31	10.33	6.74	8.11	Error	62	.553				ì	10	16	20	20											Foreari	n length						⁄Iean	61.60	59.81	60.20	59.70	Area	1	8.715	3.14	.081		D	1.84	1.52	1.80	1.56	Sex	1	19.934	7.18	.009		E	.59	.38	.40	.35	$A \times S$	1	6.315	2.27	.137		V	2.99	2.54	2.99	2.61	Error	62	2.778				1	10	16	20	20		_										right						1000	27.50	40.06	70.05			1	15 015	1.49	.227		Mean	37.50	40.06	38.85	36.68	Area	ı ı	15.815				SD	3.27	3.29	2.16	4.05	Sex	1	.572	.05	.817		SE	1.03	.82	.48	.91	$\mathbf{A} \times \mathbf{S}$	1	85.501	8.05	.006		CV	8.72	8.21	5.56	11.04	Error	62	10.615					10	16	20	20											Length o	f digit one						A ean	11.30	11.13	11.75	11.35	Area	1	1.736	4.46	.039		SD	.48	.50	.64	.75	Sex	1	1.260	3.23	.077		SE	.15	.13	.14	.17	$A \times S$	1	.193	.50	.484		CV	4.25	4.49	5.45	6.61	Error	62	.390				n	10	16	20	20						Table 10.—Continued.		Caa	tinga	Cer	rado			Analysis of varia	ince			----------	--------------	--------------	-------------	-------------	--------------------------------	---------	-------------------	--------------	--------------			ే.దే	99	<i>ే</i> రే	99	Factor	df	MS	F	Significance						Length of	digit three						Mean	109.10	105.00	105.55	105.50	Area	1	35.438	3.33	.073		SD	3.60	2.68	2.46	4.10	Sex	1	65.610	6.17	.016		SE	1.14	.67	.55	.92	$A \times S$	1	62,486	5.88	.018		CV	3.30	2.55	2.33	3.89	Error	62	10.627				n	10	16	20	20											Length o	digit four						Mean	80.70	78.31	78.65	78.15	Area	1	18.648	2.50	.119		SD	2.83	1.89	2.06	3.68	Sex	1	31.763	4.26	.043		SE	.90	.47	.46	.82	$A \times S$	1	13.572	1.82	.182		CV	3.51	2.41	2.62	4.71	Error	62	7.462				n	10	16	20	20											Length o	f digit five						Mean	73.40	71.63	71.85	71.35	Area	1	12.688	2.28	.136		SD	2.01	2.06	1.98	3.00	Sex	1	19.717	3.54	.065		SE	.64	.52	.44	.67	$A \times S$	1	6.193	1.11	.296		CV	2.74	2.88	2.76	4.20	Error	62	5.569				n	10	16	20	20											Tibia	length						Mean	24.70	24.88	25.45	24.45	Area	1	.402	.26	.615		SD	1.83	.89	1.32	1.10	Sex	1	2.593	1.64	.205		SE	.58	.22	.29	.25	$A \times S$	1	5.260	3.34	.073		CV	7.41	3.58	5.19	4.50	Error	62	1.577				n	10	16	20	20											Calca	r length						Mean	9.80	9.75	9.55	10.05	Area	1	.010	.01	.917		SD	.92	1.13	.95	.76	Sex	1	.771	.88	.353		SE	.29	.28	.21	.17	$A \times S$	1	1.152	1.31	.257		CV	9.38	11.59	9.95	7.56	Error	62	.879				n	10	16	20	20												af length						Mean	6.70	6.19	6.50	6.40	Area	1	.001	.00	.972		SD	.48	.91	.51	.75	Sex	1	1.429	2.92	.092		SE	.15	.23	.12	.17	$\mathbf{A} \times \mathbf{S}$	1	.648	1.32	.254		CV	7.16	14.70 16	7.85 20	11.72 20	Error	62	.489				n	10	16	20									20.22	20.10	20.44		ngth of skull		2.45	1.06	207		Mean	29.22	29.18	29.44	28.65	Area	1	.345	1.06	.307		SD	.52	.61	.65	.47	Sex	1	2.562	7.87	.007		SE CV	.17 1.78	.15 2.09	.15	.11 1.64	A×S	1 61	2.016	6.19	.016			9	16	2.21 20	20	Error	01	.326				n	9	10	20		asal length						Mean	26.24	26.22	26.61	25.71	Area	1	.234	80	.375		SD	26.34 .62	26.22 .51	.48	.58	Sex	1	3.845	.80 13.10	.001		SE	.21	.13	.11	.13	$\mathbf{A} \times \mathbf{S}$	1	2.191	7.47	.008		CV	2.35	1.95	1.80	2.26	Error	61	.294	7.77	.000		n	9	16	20	20		٠.	, .									tic breadth						Mean	15.23	15.56	15.55	14.94	Area	1	.342	2.07	.156		SD	.46	.37	.39	.43	Sex	i	.288	1.74	.192		SE	.15	.09	.09	.10	$A \times S$	1	3.224	19.48	<.001		CV	3.02	2.38	2.51	2.88	Error	61	.166					9	16	20	20						Table 10.—Continued.		Caat	tinga	Cerr	ıdo			Analysis of varia	ance			------	-------	-------	----------	----------------	------------------------	---------	-------------------	-------	--------------			ే	ρç	ే	99	Factor	df	MS	F	Significance						Postorbital	constriction						Mean	6.47	6.38	6.38	6.37	Area	1	.035	.63	.432		SD	.15	.16	.26	.28	Sex	1	.033	.59	.444		SE	.05	.04	.06	.06	$A \times S$	1	.021	.37	.545		CV	2.32	2.51	4.08	4.40	Error	61	.056				n	9	16	20	20		-									Mastoid	l breadth						Mean	14.42	14.78	14.91	14.19	Area	1	.042	.38	.538		SD	.24	.38	.37	.32	Sex	1	.493	4.50	.038		SE	.08	.08	.08	.07	$A \times S$	1	4.207	38.41	<.001		CV	1.66	2.23	2.48	2.26	Error	61	.110				n	9	16	20	20											Breadth o	f braincase						Mean	12.13	12.03	12.04	11.82	Area	1	.339	5.10	.028		SD	.20	.18	.30	.29	Sex	î	.379	5.70	.020		SE	.07	.04	.07	.07	$A \times S$	1	.051	.76	.385		CV	1.65	1.50	2.49	2.45	Error	61	.067				n	9	16	20	20											Rostral	breadth						Mean	6.74	6.96	7.07	6.67	Area	1	.003	.06	.815		SD	.29	.19	.23	.25	Sex	1	.129	2.27	.137		SE	.10	.05	.05	.06	$A \times S$	1	.368	24.03	<.001		CV	4.30	2.73	3.25	3.75	Error	61	.057				n	9	16	20	20											Height of	^c braincase						Mean	13.18	13.33	13.33	12.99	Area	1	.122	.94	.336		SD	.43	.27	.30	.44	Sex	1	.136	1.05	.311		SE	.14	.07	.07	.10	$A \times S$	1	.868	6.68	.012		CV	3.26	2.03	2.25	3.39	Error	61	.130				n	9	16	20	20										Bi	eadth across	the upper mol	ars					Mean	9.86	9.76	9.98	9.73	Area	1	.028	.32	.573		SD	.24	.32	.25	.34	Sex	1	.446	5.04	.028		SE	.08	.08	.06	.08	$A \times S$	1	.083	.94	.337		CV	2.43	3.29	2.51	3.49	Error	61	.089				n	9	16	20	20										Br	eadth across i	he upper cani	nes					Mean	6.88	7.21	7.27	6.75	Area	1	.018	.42	.518		SD	.15	.22	.21	.22	Sex	1	.126	2.94	.092		SE	.05	.05	.05	.05	$A \times S$	1	2.670	62.52	<.001		CV	2.18	3.05	2.89	3.26	Error	61	.043				n	9	16	20	20										Le	ngth of the m	axillary toothi	row					Mean	9.53	9.53	9.69	9.37	Area	1	.000	.01	.922		SD	.19	.18	.15	.22	Sex	1	.391	11.16	.001		SE	.06	.04	.03	.05	$A \times S$	1	.381	10.87	002		CV	1.99	1.89	1.55	2.35	Error	61	.035				n	9	16	20	20										Length	of the upper	molariform to	oothrow					Mean	7.59	7.43	7.60	7.47	Area	1	.009	.24	.624		SD	.16	.23	.17	.20	Sex	1	.302	8.07	.006		SE	.05	.06	.04	.04	$A \times S$	1	.003	.07	.786		CV	2.11	3.10	2.24	2.68	Error	61	.038				n	9	16	20	20						Table 10.—Continued.		Caat	tinga	Ceri	rado	-	-	Analysis of vari	ance			------	-------	-------	-------	-----------------	----------------	------	------------------	-------	--------------				δδ		₽₽	Factor	df	MS	F	Significance						Width of the	widest molar						Mean	2.12	2.06	2.13	2.08	Area	1	.001	.08	.781		SD	.11	.14	.09	.08	Sex	1	.044	4.02	.050		SE	.04	.04	.02	.02	$A \times S$	1	.000	.03	.860		CV	5.19	6.80	4.23	3.85	Error	61	.011				1	9	16	20	20										G	reatest length	of the mandil	ble					Mean	19.31	19.30	19.43	18.76	Area	1	.648	3.82	.055		SD	.38	.39	.40	.45	Sex	1	1.696	9.98	.003		SE	.13	.10	.09	.10	$A \times S$	1	1.587	9.34	.003		CV	1.97	2.02	2.06	2.40	Error	61	.170				n	9	16	20	20										Lei	igth of the ma	ndibular tooth	irow					Mean	10.34	10.59	10.75	10.39	Area	1	.142	1.98	.165		SD	.27	.29	.31	.19	Sex	1	.049	.68	.412		SE	.09	.07	.07																																																																																																																																																																																																																																																															
.04	$A \times S$	i	1.379	19.27	<.001		CV	2.61	2.74	2.88	1.83	Error	61	.072				n	9	16	20	20										1	Length of the c	coronoid proce	SS					Mean	6.38	6.74	7.03	6.79	Area	1	1.789	16.44	<.001		SD	.29	.29	.34	.37	Sex	1	.048	.44	.509		SE	.10	.07	.08	.08	$A \times S$	1	1.337	12.28	<.001		CV	4.55	4.30	4.84	5.45	Error	61	.109				n	9	16	20	20						of the upper molariform tooth row, width of the widest molar, and greatest length of the maxilla) exhibit statistically significant secondary sexual variation. In the only case where females have a larger sample mean values than males (total length), statistical significance is not observed. Clearly, when samples are from a restricted locality, as in the work of Taddei (1975a) or when geographic differences between sampling localities can be statistically controlled, as in the analyses for the Caatingas and Cerrado, strong sexual dimorphism has been detected by univariate analyses with males consistently larger than females. Perhaps the inclusion of specimens from disparate localities has confounded the results in the work of Valdez (1970). Similarly, the large morphometric heterogeneity attributable to geographic differences in the samples used by Power and Tamsitt (1973) may have prevented a simple set of unipolar size vectors from aecounting for the differences between the sexes shown by discriminant function analysis. ### Phyllostomus hastatus (Pallas, 1767) P. h. hastatus is the presently recognized subspecies designation for populations of this species in the Northeast of Brazil (Jones and Carter, 1976). This large omnivore was rare in the Caatingas but widespread and common in both Cerrado and Cerradão habitats on the Chapada do Araripe. A colony of more than 100 individuals roosted in a small attic-like space (6 m by .5 m by .5 m) in the entranee arch to the Colégio Agrícola de Crato; the roost was also occupied by a larger eolony of *Molossus molossus* (>300 individuals). Of the 108 individuals of P. h. hastatus eventually captured from the roost, 48 were males. This strongly suggests an equal sex ratio (Binomial Test, P > .05) and the absence of harem groups within the colony (contrary to the situation reported by Bradbury, 1977). Swanepoel and Genoways (1979) cite authors who have published morphometrie data on *P. hastatus*. G. M. Allen (1908), Lima (1926), Cunha Vieira (1942), and Taddei (1975a) are the only workers who have included Brazilian specimens in their accounts. The work of Taddei (1975a) is unique because he performed statistical analyses on large samples. He detected statistically significant secondary sexual variation in all 17 of the cranial characters examined and for eight of the 17 external characters. Males are larger on the average than females in all cases. The results from the Northeast of Brazil are comparable (Table 11). Males have larger sample means than females for all but two of the 30 variables. Statistically significant secondary sexual variation is detected in 15 of the 16 cranial characters and in eight of the 14 external characters. Clearly, *P. hastatus* is dimorphic with males larger than females. ### Trachops cirrhosus (Spix, 1823) Of the three nominal subspecies currently in use, $T.\ c.\ cirrhosus$ is the appellation appropriate for Northeast Brazilian populations of this omnivore because its type locality is in Pernambuco (Jones and Carter, 1976). The distribution of $T.\ c.\ cirrhosus$ in the Caatingas was restricted to serrotes or areas containing rock outcroppings and it was absent from both Cerrado and Cerradão habitats on the Chapada do Araripe. Sixteen of 35 individuals captured from the Caatingas were males, hence the sex ratio appears to be equal (Binomial Test, P > .05). Peters (1865), Lima (1926), Cunha Vieira (1942), and Felten (1956) are the only authors among the group cited by Swanepoel and Genoways (1979) to include measurements of T. cirrhosus from Brazil. Information concerning individual variation is conspicuously absent from the literature and secondary sexual variation has not been examined in this species. The results of a statistical analysis of individual and secondary sexual variation for T. c. cirrhosus are given in Table 12. Only a single character exhibits statistically significant secondary sexual variation (breadth across the upper canines). Males have larger sample means than females for all of the cranial characters and four of the external characters while females have larger sample means than males for 10 external characters. Because of the relatively large sample sizes, low levels of significance associated with the analyses of variance and minor differences encountered between male and female mean values, it seems prudent to suggest that T. cirrhosus does not exhibit sexual dimorphism. # Subfamily Glossophaginae *Glossophaga soricina* (Pallas, 1766) This nectarivore was abundant and ubiquitous in Cerrado, Cerradão, and most habitats of the Caatingas; it is particularly dominant in disturbed or second growth areas. Abandoned man-made structures and caves were preferred roosting sites and colony size may exceed 2,000 individuals. Aggre- gations of Carollia perspicillata containing up to 20 individuals were frequently found roosting in association with G. soricina throughout the Northeast. Small groups of bats were frequently observed foraging near fruiting plants. Solanum psniculatum was the predominant fruit in the diet of Caatingas specimens whereas the fruit of Vismia was preferred in the Cerrado (although Solanum was also consumed). Males and females occurred in statistically indistinguishable proportions in the Caatingas (Binomial Test, P > .05); 46% of the 421 captured adult specimens were males. On the Chapada do Araripe, 56% of the 494 captured adult specimens were males. Although the proportion of males and females did differ significantly (Binomial Test, P < .01), the magnitude of the difference was small and probably reflects the vagaries of sampling by mist net rather than characteristics of the social structure in this species. In the Caatingas, some sexual segregation occurred within the large roosts that occurred in abandoned buildings. Females tended to congregate as a central unit; males occupied more dispersed solitary locations at the periphery of the roost. This phenomenon became particularly evident as the time of parturition approached. Of the four generally recognized subspecies, Glossophaga s. soricina is the designation applied to Brazilian specimens (Jones and Carter, 1976). Many authors report morphometric data on G. soricina (see Swanepoel and Genoways, 1979), but only Miller (1913), Lima (1926), Cunha Vieira (1942), and Taddei (1975b) include specimens from Brazil. Taddei (1975b) is unique among these authors in working with large samples of G. soricina and performing statistical analyses on numerous morphometric characters. He finds statistically significant sexual dimorphism in four of 17 external characters (headbody length, forearm length, length of the fifth metacarpal and length of the fourth metacarpal); in all four cases males were larger, on the average, than females. Among the 15 cranial characters analyzed, statistically significant secondary sexual variation is apparent in seven characters (length of molar, mandibular toothrow length, breadth across the canines, zygomatic breadth, braincase breadth, mastoid breadth, and depth of the cranium); females are larger on the average for the first two characters while males are larger on the average for the latter five characters. The results of statistical analyses on the specimens of *G. s. soricina* from the Northeast of Brazil are Table 11.—Summary statistics for external and cranial characters (mean; standard deviation, SD; standard error of the mean, SE; coefficient of variation, CV; sample size, n) of Phyllostomus hastatus males and females from both the Caatinga and Cerrado biomes. Due to small sample sizes, data from both biomes were combined to determine the existence of significant (P < 0.50) secondary sexual variation via a one-way analysis of variance (Model I) with replication.			tinga	Cer	rado			Analysis of varia				--------------	--------------	--------	--------	----------	-------------	----	-------------------	-------	-------------			<i>దే</i> దే	δδ	ేరే	99	Factor	df	MS	F	Significano						Total	length						Mean	123.00	119.43	127.25	119.75	Sex	1	643.527	34.46	<.001		SD	_	1.81	4.19	5.07	Within	46	18.673				SE	_	.69	.94	1.13			1010.0				CV	_	1.52	3.29	4.23							1	1	7	20	20							•	•	,	20		1								.= 0.4			length						Aean	19.00	17.86	19.15	18.50	Sex	1	7.741	1.60	.212		D	_	2.04	1.93	2.57	Within	46	4.839				E	_	.77	.43	.57							CV	_	11.42	10.08	13.89							L	1	7	20	20											Hindfo	ot length						A ean	17.00	17.57	17.75	17.05	Sex	1	3.307	2.80	.101		SD	_	.98	1.07	1.15	Within	46	1.182				SE	_	.37	.24	.26							CV	_	5.58	6.03	6.74							1	1	7	20	20											Ear	length						A ean	28.00	28.14	28.90	27.75	Sex	1	11.938	7.23	.010		SD	_	1.57	.97	1.48	Within	46	1.652				E	_	.60	.22	.33							CV	_	5.58	3.36	5.33							1	1	7	20	20												s length						Mean	13.00	13.08	13.20	13.20	Sex	1	.021	.06	.810		D .	-	.58	.62	.62	Within	46	.062	.00	.010		SE	_	.22	.14	.14	** 1111111	40	.002				CV	_	4.46	4.70																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																							
4.70							1	1	7	20	20								1	,	20									01.00	01.00	0.4.20		n length		02.667	20.22			Mean	81.00	81.29	84.30	81.55	Sex	1	83.667	20.33	<.001		SD	_	2.50	1.63	2.19	Within	46	4.116				SE .	_	.94	.36	.49							CV		3.08	1.93	2.69							1	1	7	20	20												right						Mean	94.50	84.64	93.43	81.68	Sex	1	1,437.574	21.46	<.001		SD	_	8.94	8.58	7.80	Within	46	66.987				SE	_	3.38	1.92	1.74							CV	_	10.56	9.18	9.55							1	1	7	20	20											Length o	f digit one						Mean	13.00	14.14	14.05	14.25	Sex	1	.583	.55	.462		SD	_	1.07	1.28	.72	Within	46	1.058		2		SE		.40	.29	.16	- 3						CV	_	7.57	9.11	5.05								1	7.37	20	20						Table 11.—Continued.			tinga		таdo			Analysis of varia				------------------------	--------	-----------	-----------	-------------	---------------	----	-------------------	-------	-------------			ðð	99	<i>₫₫</i>	99	Factor	df	MS	F	Significanc						Length of	digit three						Mean	145.00	145.86	147.35	143.95	Sex	1	92.191	5.64	.022		D	145.00	3.80	3.42	4.86	Within	46	16.358	5.04	.022		E	_	1.16	.77	1.09	VV ILIIIII	40	10.556				CV			2.32	3.38								_	2.11 7		20								1	/	20												Length o	f digit four						Aean -	108.00	108.00	110.70	107.85	Sex	1	85.003	5.60	.022		D	_	1.83	3.91	4.48	Within	46	15.170				E	_	.69	.87	1.00							CV	_	1.69	3.53	4.15								1	7	20	20												C digit fine											of digit five						A ean	98.00	99.14	102.15	98.15	Sex	1	148.446	14.42	<.001		SD	_	1.68	3.20	3.65	Within	46	10.293				E	_	.63	.69	.82							CV	_	1.69	3.03	3.72								1	7	20	20											Tibia	length						Mean	32.00	32.57	33.65	32.75	Sex	1	8.894	10.03	.003		SD	32.00	.54	.67	1.21	Within	46	.886	10.03	.003		E	_	.20	.15	.27	VV Itilili	40	.880				CV	_	1.66	1.99	3.69								1	7		20								1	/	20												Calca	r length						Mean	19.00	21.29	21.35	20.40	Sex	1	4.373	1.93	.171		SD	_	1.11	1.66	1.35	Within	46	2.263				SE	_	.42	.37	.30							CV	_	5.21	7.78	6.62							1 =	1	7	20	20											Nosala	af length							0.00	0.14	0.05				1.112	2.62	062		Mean	9.00	9.14	8.95	9.30	Sex	1	1.112	3.62	.063		D	_	.38	.39	.73	Within	46	.307				SE .	_	.14	.09	.16							CV	_	4.16	4.36	7.85							ı	1	7	20	20											Greatest le	ngth of skull						Mean	36.20	35.04	36.93	35.29		1	32.917	63.35	<.001		D	_	.26	.96	.51	Within	46	.520	2.5-			SE .		.10	.21	.12			.520				V	_	.74	2.60	1.45							· ·	1	7	20	20							<u>.</u>		,	20													asal length						Mean	32.20	31.16	32.70	31.16	Sex	1	27.011	92.12	<.001		D	_	.38	.65	.48	Within	46	.293				E	_	.14	.15	.11							CV	_	1.22	1.99	1.54							n	1	7	20	20												tic breadth							20.00	10.51	20.02			1	10.000	69.70	< 001		Mean	20.90	19.54	20.93	19.70	Sex	1	19.000	68.79	<.001		SD	_	.47	.67	.39	Within	46	.276				SE	_	.18	.15	.09							$\mathbb{C}\mathbf{V}$	_	2.41	3.20	1.98							1	1	7	20	20						Table 11.—Continued.		Caat		Cert				Analysis of vari				------------------------	--------	-----------	------------	---------------	---	--------	------------------	--------	--------------			ðð	99	ేరే	99	Factor	df	MS	F	Significance						Postorbital	constriction						Mean	6.80	6.66	7.03	6.83	Sex	1	.620	15.01	<.001		SD	_	.19	.23	.16	Within	46	.041	13.01	<.001		SE	_	.07	.05	.04	***************************************		.011				$\mathbb{C}\mathbf{V}$	_	2.85	3.27	2.34							1	1	7	20	20								•	,	20		1.1 1.1						4	10.20	10.14	10.16		d breadth						Mean	19.30	18.14	19.46	18.00	Sex	1	23.627	145.84	<.001		SD	_	.28	.51	.32	Within	46	.162				SE	_	.10	.11	.07							CV	_	1.54	2.62	1.78								1	7	20	20											Breadth o	f braincase						Aean 💮	14.00	13.59	14.04	13.63	Sex	1	2.080	28.22	<.001		D	_	.11	.29	.30	Within	46	.074				E		.04	.07	.07							CV	_	.81	2.07	2.20								1	7	20	20											Rostral	breadth						Aean	9.50	9.09	9.65	9.14	Sex	1	3.099	56.09	<.001		D	9.50	.23	.25	.24	Within	46	.055	30.09	<.001		E	_	.09	.06	.05	VV ILIIIII	40	.033				CV		2.53	2.59	2.63							· •	_ 1	2.33 7	2.39	2.03								1	/	20												Height of	braincase						Aean	16.70	16.11	17.11	16.15	Sex	1	10.631	48.38	<.001		D	_	.27	.62	.34	Within	46	.220				E		.10	.14	.08							CV	_	1.68	3.62	2.11								1	7	20	20										Bi	readth across	the upper mola	ırs					/lean	13.00	12.86	13.56	13.22	Sex	1	1.997	23.00	<.001		D	_	.31	.24	.27	Within	46	.087	23.00	<.001		E		.12	.05	.06	** 1611111	-10	.007				CV	_	2.41	1.77	2.04							. *	1	7	20	20								•	•										0.20	0.75			he upper canin	es					1ean	9.30	8.67	9.75	9.01	Sex	1	7.590	121.03	<.001		D	_	.18	.23	.21	Within	46	.063				E	_	.07	.05	.05							CV		2.08	2.36	2.33							l	1	7	20	20										Le	ngth of the m	axillary toothre	ЭW					1ean	13.10	12.70	13.33	12.81	Sex	1	3.414	54.65	<.001		D	_	.33	.28	.19	Within	46	.063				E	-	.12	.06	.04							CV	_	2.60	2.10	1.58								1	7	20	20										Lonotl	of the unner	molariform too	othrow					Aean	10.20	0.92		9.91			100	12.24	- 001		D	10.20	9.83	10.09		Sex	1	.480	12.24	<.001		E	_	.24	.21 .05	.17	Within	46	.039				SE CV	_	.09		.04							- V 1	_	2.44	2.08	1.72								1	7	20	20						Table 11.—Continued.		Caati	nga	Cerr	ado			Analysis of varia	nce				------	--------------	-------	--------------	-----------------	-----------------	-----	-------------------	-------	--------------	--			<i>దే</i> దే	QQ	<i>దీ</i> దీ	ŞŶ	Factor	df	MS	F	Significance							Width of the	widest molar							Mean	3.30	3.41	3.43	3.32	Sex	1	.066	3.52	.067			SD	_	.19	.15	.10	Within	46	.019					SE	_	.07	.03	.02								CV	_	7.48	4.37	3.01								n	1	7	20	20											G	reatest length	of the mandib	le						Mean	24.90	24.11	25.50	24.16	Sex	1	20.801	90.70	<.001			SD	_	.27	.55	.46	Within	46	.229					SE	_	.10	.12	.10								CV	_	1.12	2.16	1.90								n	1	7	20	20											Lei	igth of the ma	ındibular tooth	row						Mean	14.80	14.14	15.23	14.47	Sex	1	8.027	84.45	<.001			SD	_	.35	.30	.26	Within	46	.095					SE	_	.13	.07	.06								CV	_	2.48	1.96	1.80								n	1	7	20	20											1	Length of the o	coronoid proces	SS.						Mean	10.70	9.86	11.13	10.31	Sex	1	9.932	68.63	<.001			SD	_	.26	.44	.27	Within	46	.145					SE	_	.10	.10	.06								CV	_	2.64	3.95	2.62								n	1	7	20	20							Table 12.—Summary statistics for external and cranial characters (mean; standard deviation, SD; standard error of the mean, SE; coefficient of variation, CV; sample size, n) of Trachops cirrhosus males and females from the Caatinga biome. A one-way analysis of variance (Model I) with replication is presented for each character. The existence of significant secondary sexual variation is indicated by P values less than or equal to .050.		Caat	inga	Cer	rado			Analysis of varia	nce			------	--------	-------	------	--------	------------	----	-------------------	-----	--------------			ే	99	రేరే	QQ	Factor	df	MS	F	Significance						Tota	l length						Mean	100.81	98.58			Sex	1	43.331	.70	.409		SD	7.63	8.07			Within	33	61.972				SE	1.91	1.85									CV	7.57	8.19									n	16	19													Tail	length						Mean	15.75	15.63			Sex	1	.122	.03	.875		SD	2.32	2.09			Within	33	4.831				SE										
.58	.48									CV	14.73	13.37									n	16	19													Hindfo	oot length						Mean	16.25	16.26			Sex	1	.002	.00	.963		SD	.68	.93			Within	33	.687				SE	.17	.21									CV	4.18	5.72									n	16	19								Table 12.—Continued.		Caa	tinga	Cerrado			Analysis of varia	nce			--------------	-------------	--------	------------------	--------------	----	-------------------	-----	--------------			<i>ే</i> చే	QQ	\$\$ <u>\$\$</u>	Factor	df	MS	F	Significance					Far	length						Mean	32.31	33.58	Dur	Sex	1	.617	.17	.681		SD							.17	.061			2.02	1.77		Within	33	3.578				SE	.51	.41								CV	6.25	5.27								n	16	19											Tragus	s length						Mean	13.31	13.58		Sex	1	.617	.72	.401		SD	.95	.90		Within	33	.851	.72	.401		SE	.24	.21		VV I (IIIIII	33	.031				CV	7.14	6.63									16	19								n	10	19											Foreari	n length						Mean	60.94	61.21		Sex	1	.648	.27	.604		SD	1.29	1.72		Within	33	2.367				SE	.32	.39		** 1022111	55	2.501				CV	2.12	2.81								n	16	19								11	10	19											$W\epsilon$	right						Mean	38.88	39.16		Sex	1	.695	.02	.898		SD	4.46	7.68		Within	33	41.221				SE	1.12	1.76								CV	11.47	19.61								n	16	19											fI	C 1:-:									Lengin o	f digit one						Mean	14.19	14.95		Sex	1	.001	.00	.975		SD	.77	1.03		Within	33	.845				SE	.19	.24								CV	5.15	6.89								n	16	19											Langth of	digit three									Lengin oj							Mean	115.50	115.58		Sex	1	.054	.00	.951		SD	3.16	4.18		Within	33	14.080				SE	.79	.96								CV	2.74	3.62								n	16	19											Length a	digit four						1 ()	05.06	05.60	Length of			2 2 5 7				Mean	85.06	85.68		Sex	1	3.357	.44	.511		SD	2.57	2.91		Within	33	7.607				SE	.64	.67								CV	3.02	3.40								n	16	19											I enoth o	f digit five						Maan	96 12	97.00	Length 0	-	1	6.650	70	202		Mean	86.13	87.00		Sex	1	6.650	.78	.382		SD	2.75	3.04		Within	33	8.477				SE	.69	.70								CV	3.19	3.49								n	16	19											Tibia	length						Mean	28.13	28.00		Sex	1	134	05	021		SD					1	.136	.05	.821			.81	2.06		Within	33	2.599				SE	.20	.47								CV	2.88	7.36								n	16	19							Table 12.—Continued.		Caat	inga	Cerrado		·	Analysis of varia	ence			-------	------------	-------------	-----------	------------------	----	-------------------	------	--------------			ే	99	ỗỗ ♀♀	Factor	df	MS	F	Significance					Cal	car length						Mean	13.81	13.95	Cu.	Sex	1	.158	.11	.742		SD	.91	1.39		Within	33	1.436		., 42		SE	.23	.32		** 1(111111	33	1.450				CV	6.59	9.96									16	19								n	10	19	3.7	1 61 1								0.00	NOSE	rleaf length		5.43	0.4	220		Mean	8.25	8.00		Sex	1	.543	.94	.339		SD	.68	.82		Within	33	.576				SE	.17	.19								CV	8.24	10.25								n	16	19											Greatest	length of skull						Mean	28.11	27.94		Sex	1	.261	.14	.715		SD	.69	.73		Within	32	.506				SE	.18	.17								CV	2.45	2.61								n	15	19											Condyl	obasal length						Maan	25.05	24.70	Conay.	Sex	1	.631	2.14	.153		Mean	25.05	24.78		Within	32	.295	2.14	.133		SD	.51	.57		VV IIIIIII	32	.293				SE	.13	.13								CV	2.04	2.30								n	15	19											Zygon	natic breadth						Mean	14.46	14.34		Sex	1	.117	.41	.525		SD	.52	.53		Within	32	.283				SE	.14	.12								CV	3.66	3.70								n	15	19											Postorbi	tal constriction						Mean	13.79	13.63	1 0010.01	Sex	1	.202	1.73	.198		SD	.29	.38		Within	32	.117	1.75	.170			.07			VV ILIIIII	32	,117				SE		.09 2.79								CV	2.10 15	19								n	13	19											Mast	oid breadth		000	0.0	0.60		Mean	5.29	5.28		Sex	1	.000	.00	.968		SD	.13	.21		Within	32	.031				SE	.03	.05								CV	2.46	3.98								n	15	19											Breadti	h of braincase						Mean	11.77	11.63		Sex	1	.165	2.80	.104		SD	.27	.22		Within	32	.059				SE	.07	.05								CV	2.29	1.89								n	15	19											Rost	ral breadth						Mean	6.16	6.03	11050	Sex	1	.138	2.88	.100		SD	.26	.18		Within	32	.048				SE SE	.07	.04		** 1 []]]]	52	.540				CV	4.22	2.99										2.99 19								n	15	19							Table 12.—Continued.		Caa	tinga	Cerrado			Analysis of vari	ance			------	-------	-------	---------------------	------------------	---------	------------------	------	--------------			88	QΩ	3 3 ♀♀	Factor	df	MS	F	Significance					Height o	of braincase						Mean	14.73	14.61		Sex	1	.113	.72	.403		SD	.45	.35		Within	32	.157				SE	.12	.08			32	.13,				CV	3.05	2.40								n	15	19											Rreadth across	the upper mola	rec					Mean	10.37	10.30	Dream across	Sex		0.45	4.1	525		SD	.39	.28		Sex Within	1 32	.045	.41	.525		SE	.10	.06		VV ILIIIII	32	.109				CV	3.76	2.72								n	15	19								11	13	19											Breadth across	the upper canin	ies					Mean	6.18	6.07		Sex	1	.095	5.45	.026		SD	.12	.14		Within	31	.017				SE	.03	.03								CV	1.94	2.31								n	15	18											Length of the n	naxillary toothr	ow					Mean	10.35	10.27		Sex	1	.062	1.04	.316		SD	.28	.21		Within	31	.059	1.04	.510		SE	.07	.05		** 1611111	51	.037				CV	2.71	2.04								n	15	18								-		. 0	T	1 :6							0.20	0.20	Length of the upper							Mean	8.30	8.30		Sex	1	.000	.01	.943		SD	.27	.16		Within	32	.045				SE	.07	.04								CV	3.25	1.93								n	15	19											Width of th	e widest molar						Mean	3.16	3.10		Sex	1	.030	1.87	.181		SD	.14	.12		Within	32	.016				SE	.04	.03								CV	4.43	3.87								n	15	19											Greatest length	h of the mandib	le					Mean	18.90	18.63		Sex	1	.628	3.63	.066		SD	.42	.41		Within	32	.173	2.05	.000		SE	.11	.09			22	,5				CV	2.22	2.20								n	15	19											Length of the m	andihular tooth	row.					Mean	11.29	11.14	Length of the m	Sex		100	2.07	000		SD	.31	.18		Sex Within	1 32	.188	3.07	.089		SE	.08	.18		vv Itilin	32	.061				CV	2.75	1.62								n	15	1.02									-		Longth of the	coronoid proces	S					Mean	5.48	5.46	Length of the	Sex		002	02	077		SD	.34	.29		Sex Within	1 32	.002 .098	.02	.877		SE	.09	.07		AA ITIIII	32	.098				CV	6.20	5.31								n	15	19									1.5	17							Table 13.—Summary statistics for external and cranial characters (mean; standard deviation, SD; standard error of the mean, SE; coefficient of variation, CV; sample size, n) of Glossophaga soricina males and females from both Caatinga and Cerrado biomes. A two-way analysis of variance (Model I) with replication is presented for each character. The existence of significant secondary sexual or geographic variation is indicated by P values less than or equal to .050.		Caa	tinga	Cer	rado			Analysis of vari				------------------------	------------	-------	-------	-------	--------------	-----	------------------	-------	-------------			ð ే	99		δδ	Factor	df	MS	F	Significanc						Total	length	•					Aean	63.90	63.90	63.30	64.75	Area	1	.313	.04	.837		SD	2.02	2.97	2.30	3.35	Sex	1	10.513	1.43	.236		SE	.45	.67	.51	.75	$A \times S$	1	10.513	1.43	.236		CV	3.16	4.65	3.63	5.17	Error	76	7.363	1.15	.200) 1	20	20	20	20	Litoi	70	7.505				•
Error	76	1.501					20	20	20	20							_					ot length				-06		Aean	9.10	9.05	9.30	9.30	Area	1	1.013	2.83	.096		D	.79	.39	.57	.57	Sex	1	.013	.03	.852		ΣE	.18	.09	.12	.12	$A \times S$	1	.013	.03	.852		CV	8.68	4.31	6.13	6.13	Error	76	.357					20	20	20	20											Ear	length						1ean	13.10	13.30	13.25	13.35	Area	1	.200	.26	.611		D	1.25	.57	.72	.81	Sex	1	.450	.59	.446		E	.28	.13	.16	.18	$A \times S$	1	.050	.07	.799		CV	9.54	4.29	5.43	6.07	Error	76	.767				l	20	20	20	20											Tragu	s length						Aean	5.95	6.00	5.70	5.80	Area	1	1.013	2.71	.104		D	.61	.46	.47	.83	Sex	1	.113	.30	.585		SE .	.14	.10	.11	.19	$A \times S$	1	.013	.03	.855		CV	10.25	7.67	8.25	14.31	Error	76	.373				ı	20	20	20	20	2.7.01	. 0	.575									m length						A ean	35.15	36.10	35.05	35.75	Area	1	1.103	1.35	.249		D	.88	.97	.83	.79	Sex	1	13.613	18.13	<.001		E	.20	.22	.19	.18	$A \times S$	1	.313	.42	.521		CV	2.50	2.69	2.37	2.21	Error	76	.751	.42	.521		- * 1	20	20	20	20	Liioi	70	.731					_0	20	-0		eight						A ean	9.40	10.50	10.18	10.63	Area	1	4.050	2.59	.112		SD	.45	1.48	.86	1.77	Sex	1	12.013	7.68	.007		SE	.10	.33	.19	.40	$A \times S$	1	2.113	1.35	.249		CV	4.79	14.10	8.45	16.65	Error	76	1.564	1.55	.2 ()		- v 1	20	20	20	20	LITOI	70	1.504				1	20	20	20		c. r. ··							7.05	7.05	7.00		f digit one	•	013	0.4	0.51		Mean	7.95	7.95	7.90	8.05	Area	1	.013	.04	.851		SD	.69	.69	.55	.39	Sex	1	.113	.32	.573		SE	.15	.15	.12	.09	$A \times S$	1	.113	.32	.573		$\mathbb{C}\mathbf{V}$	8.68	8.68	6.96	4.84	Error	76	.351				n	20	20	20	20						Table 13.—Continued.		Caa	atinga	Ce	rrado			Analysis of var	iance			---------------	-------------	--------	-------	-------------	--------------------------------	----	-----------------	-------	--------------			ే దే	99		QQ	Factor	df	MS	F	Significance						Length o	f digit three						Mean	68.55	69.40	69.00	69.70	Area	1	2.813	.72	.398		SD	1.91	2.31	1.69	2.06	Sex	1	12.013	3.08	.083		SE	.43	.49	.38	.46	$A \times S$	1	.113	.03	.866		CV	2.79	3.18	2.45	2.96				.03	.000		1	20				Error	76	3.894				1	20	20	20	20							_					f digit four						Aean	50.70	51.75	50.30	51.20	Area	1	4.513	1.89	.173		D	1.63	1.68	1.26	1.58	Sex	1	19.013	7.97	.006		SE	.36	.38	.28	.35	$A \times S$	1	.113	.05	.829		CV	3.21	3.25	2.50	3.09	Error	76	2.386					20	20	20	20											Length o	of digit five						Aean	48.15	48.85	47.30	48.75	Area	1	4.513	2.21	.141		SD	1.50	1.50	1.03	1.62	Sex	1	23.113	11.33	.001		SE.	.34	.34	.23	.36	$\mathbf{A} \times \mathbf{S}$	1	2.813	1.38	.244		CV	3.12	3.07	2.18	3.32	Error	76	2.040	1.50	.411		l .	20	20	20	20	Ziro:	70	2.040									length						/lean	14.75	15.15	14.60	14.90	Area	1	.800	1.97	.165		D	.79	.59	.60	.55	Sex	1	2.450	6.03	.016		SE .	.18	.13	.13	.12	$A \times S$	1	.050	.12			CV	5.36	3.89	4.11	3.69	Error	76	.407	.12	.727		· •	20	20	20	20	EHOI	70	.407				,	20	20	20								A	5.00	4.05	4.70		r length	,	200	24	205		Aean	5.00	4.95	4.70	5.05	Area	1	.200	.76	.387		D F	.32	.61	.47	.61	Sex	1	.450	1.70	.196		E	.07	.14	.11	.14	$\mathbf{A} \times \mathbf{S}$	1	.800	3.02	.086		CV	6.40	12.32	10.00	12.08	Error	76	.265					20	20	20	20											Noselea	af length						<i>l</i> lean	4.05	4.10	3.80	4.00	Area	1	.613	3.34	.072		D	.39	.55	.41	.32	Sex	1	.313	1.70	.196		E	.09	.12	.09	.07	$A \times S$	1	.113	.61	.436		CV	9.63	13.41	10.79	8.00	Error	76	.184					20	20	20	20											Greatest le	ngth of skull						1ean	20.45	20.54	20.29	20.53		1	.136	1.07	.303		D	.39	.31	.35	.36	Sex	1	.528	4.17	.045		E	.09	.07	.08	.08	$A \times S$	1	.105	.83	.365		ĊV	1.91	1.51	1.72	1.75	Error	76	.127	.03	.505			20	20	20	20	2											asal length						1ean	19.15	19.30	19.09	19.23	Area	1	.098	.85	.359		D	.41	.26	.35	.32	Sex	1	.098	3.66			E	.09	.06	.08	.07	$A \times S$	1	.001	.00	.060		EV .	2.14	1.35	1.83	1.66	Error	76	.115	.00	.948		. V	2.14	20	20	20	EHOI	70	.113									ic breadth						Mean	9.17	9.17	9.22	9.20	Area	1	.032	.90	.346		D	.15	.16	.20	.23	Sex	1	.002	.06	.813		E E	.03	.04	.05	.05	$A \times S$	1	.002	.06			CV	3.06	1.74	2.17	2.50	Error	76	.036	.00	.813		-	20	20	20	2.30	LITOI	70	.030			Table 13.—Continued.		Caa	tinga	Сеп	ado			Analysis of varia	nce			----------	------------	------------	------------	-------------------------	--------------------------------	----------	-------------------	------	--------------			ðð	QQ	đđ	99	Factor	df	MS	F	Significance						Postorbitai	constriction						Mean	4.58	4.60	4.63	4.69	Area	1	.078	2.72	.103		SD	.14	.15	.22	.15	Sex	ì	.028	.98	.326		SE SE	.03	.03	.05	.03	$A \times S$	1	.006	.21	.646		CV	3.06	3.26	4.75	3.20	Error	76	.029	.21	.040			20	20	20	20	LITOI	70	.029				n	20	20	20												Mastoi	d breadth						Mean	8.77	8.90	8.81	8.91	Area	1	.008	.25	.622		SD	.15	.13	.22	.20	Sex	1	.265	8.10	.006		SE	.03	.03	.05	.05	$A \times S$	1	.005	.14	.712		CV	1.71	1.46	2.50	2.24	Error	76	.033				n	20	20	20	20											Breadth o	f braincase						Mean	8.64	8.64	8.56	8.72	Area	1	.000	.000	1.000		SD	.20	.23	.20	.24	Sex	1	.145	3.02	.086		SE	.04	.05	.05	.06	$A \times S$	i	.128	2.68	.106		CV	2.31	2.66	2.34	2.75	Error	76	.048	2.00	.100		n .	20	20	20	20	Lifoi	70	.046				11	20	20	20													l breadth						Mean	3.82	3.82	3.83	3.87	Area	1	.015	.42	.517		SD	.17	.14	.21	.23	Sex	1	.006	.17	.680		SE	.04	.03	.05	.05	$A \times S$	1	.006	.17	.680		CV	4.45	3.36	5.48	5.94	Error	76	.036				n	20	20	20	20											Height o	f braincase						Mean	9.28	9.11	9.16	9.17	Area	1	.021	.27	.607		SD	.34	.13	.22	.37	Sex	1	.136	1.72	.194		SE	.08	.03	.05	.08	$A \times S$	1	.153	1.93	.169		CV	3.66	1.43	2.40	4.03	Error	76	.079				n	20	20	20	20	Error	, 0	1075									the unner mal	are						5.22	5.22			the upper mol		000	0.1	026		Mean	5.33	5.33	5.34	5.33	Area	l	.000	.01	.936		SD	.12	.13	.15	.15	Sex	1	.001	.06	.810		SE	.03	.03	.03	.03	$\mathbf{A} \times \mathbf{S}$	1	.001	.06	.810		CV	2.25	2.44	2.81	2.81	Error	76	.019				n	20	20	20	20											readth across	the upper cani	nes					Mean	3.96	3.87	3.93	3.94	Area	1	.004	.29	.591		SD	.11	.15	.10	.13	Sex	1	.032	2.07	.154		SE	.02	.03	.02	.03	$A \times S$	1	.050	3.24	.076		CV	2.78	3.88	2.54	3.30	Error	76	.015				n	20	20	20	20												axillary toothi	row					Maan	6.99	7.04	6.97	engin oj ine ir 7.04	axiiiary tootni Area	row 1	.002	.09	.770		Mean							.002		.082		SD	.19	.15	.15	.12	Sex	1		3.11			SE	.04	.03	.03	.03	A×S	1 76	.005	.19	.660		CV	2.72 20	2.13 20	2.15 20	1.70 20	Error	76	.023				n	20	20														molariform to						Mean	5.34	5.23	5.26	5.25	Area	1	.013	.41	.523		SD	.21	.17	.16	.15	Sex	1	.072	2.38	.127		SE	.05	.04	.04	.03	$A \times S$	1	.050	1.65	.203		CV	3.93	3.25	3.04	2.86	Error	76	.030				n	20	20	20	20						Table 13.—Continued.		Caa	tinga	Cer	rado			Analysis of varia	ince			------	-------	-------	-------------	-----------------	-----------------	------	-------------------	------	--------------				QQ	ే దే	99	Factor	df	MS	F	Significance						Width of the	widest molar						Mean	.97	.96	.97	.91	Area	1	.010	1.89	.173		SD	.07	.09	.06	.08	Sex	1	.028	5.26	.025		SE	.02	.02	.01	.02	$A \times S$	1																																																																																																																																																																																																																																																	
.015	2.83	.097		CV	7.22	9.38	6.19	8.79	Error	76	.005				n	20	20	20	20										(Greatest length	of the mandil	ole					Mean	13.79	13.89	13.73	13.87	Area	1	.032	.27	.604		SD	.27	.48	.33	.26	Sex	1	.245	2.24	.139		SE	.06	.11	.07	.06	$A \times S$	1	.008	.07	.795		CV	1.96	3.46	2.40	1.87	Error	76	.118				n	20	20	20	20										Le	ngth of the mo	andibular tooth	irow					Mean	7.40	7.44	7.31	7.37	Area	1	.010	.32	.571		SD	.20	.26	.18	.13	Sex	1	.171	5.46	.022		SE	.04	.06	.04	.03	$A \times S$	1	.001	.04	.850		CV	2.70	3.49	2.46	1.76	Error	76	.031				n	20	20	20	20										,	Length of the	coronoid proce	SS					Mean	3.73	3.63	3.75	3.66	Area	1	.010	.32	.571		SD	.11	.18	.21	.19	Sex	1	.171	5.46	.022		SE	.03	.04	.05	.04	$A \times S$	1	.001	.04	.850		CV	2.95	4.96	5.60	5.19	Error	76	.031				n	20	20	20	20						indicated in Table 13. Significant geographic differences between Caatingas and Cerrado sites are not apparent for any of the 30 analyzed variables, and a trend in average values between the sites is not obvious. Significant secondary sexual variation is indicated for six external characters (tail length, forearm length, weight, length of digit IV, length of digit V, and tibia length) and six cranial characters (greatest length of skull, condylobasal length, mastoid breadth, width of the widest molar, length from the canine to the last molar in the ramus, and length of the coronoid process). The sample means for females are larger than those for males for nine external characters and seven cranial characters while the sample means for males are larger than those for females for only two characters. Sexual dimorphism is more pronounced in Northeast Brazilian populations of G. soricina than in those from southwestern São Paulo. Further, the trend found in the Northeast of female sample means being consistently larger than male sample means is contrary to the results obtained by Taddei (1975b). ### Lonchophylla mordax Thomas, 1903 Jones and Carter (1976) consider *L. mordax* to be a monotypic species, however, they note that it may be conspecific with L. concava as suggested by Handley (1966). This nectarivore was common in Caatingas habitats, especially at sites near serrotes. Because 51% of the 72 captured specimens were males, the sex ratio must be considered equal (Binomial Test, P > .05). L. mordax was apparently absent from the Chapada do Araripe. Very little has been published on the morphometrics of *L. mordax* (see Swanepoel and Genoways, 1979) and nothing is known concerning individual variation or secondary sexual variation in this species. A statistical analysis of morphometric variation in a Caatingas population of *L. mordax* is presented in Table 14. Five external and four cranial characters exhibit statistically significant secondary sexual variation. It appears that secondary sexual variation in this species is related to skull shape rather than skull size and to the overall size of the wings, with females having larger wings than males on the average. ### Anoura geoffroyi Gray, 1838 Three nominal subspecies of this nectarivore are recognized, with A. g. geoffroyi being the designation applied to Brazilian specimens (Jones and Carter, 1976). A. g. geoffroyi was uncommon in the Table 14.—Summary statistics for external and cranial characters (mean; standard deviation, SD; standard error of the mean, SE; coefficient of variation, CV; sample size, n) of Lonchophylla mordax males and females from the Caatinga biome. A one-way analysis of variance (Model I) with replication is presented for each character. The existence of significant secondary sexual variation is indicated by P values less than or equal to .050.		Caa	tinga	Ce	rrado			Analysis of vari					--------------	-------	-------	----	----------	-------------	-----	------------------	------	--------------	--				ŞΫ	ðð	ŞĞ	Factor	df	MS	F	Significance							Total	length							Mean	64.81	66.14			Sex	1	31.914	2.86	.095			SD	3.47	3.19			Within	70	11.142	_,,,				SE	.57	.54				, ,						CV	5.35	4.82										1	37	35										•	5,	55		T 1								_				1 all	length							Aean	10.05	10.17			Sex	1	.248	.15	.699			D	1.37	1.18			Within	70	1.641					SE	.23	.20										CV	13.63	11.60										l	37	35														Hindfo	ot length							Mean	9.03	9.20			Sex	1	.538	1.53	.220			D	.65	.53			Within	70	.351		,			SE	.11	.09										CV	7.20	5.76										1	37	35														Far	length							1	14.60	14.77		Lui		1	5/2	60	400			Mean	14.60	14.77			Sex	1	.562	.69	.409			D	.93	.88			Within	70	.816					SE .	.15	.15										CV	6.37	5.96										1	37	35														Tragus	s length							Aean	6.00	5.97			Sex	1	.015	.04	.840			SD	.67	.51			Within	70	.357					SE	.11	.09										CV	11.17	8.54										1	37	35														Foreari	n length							1 ean	34.65	35.14			Sex	1	4.393	4.35	.041			D	1.14	.85			Within	70	1.010					SE.	.19	.14										CV	3.29	2.42										1	37	35											J.	55		IV.	right							,	0.22	0.07		WE			5 204	0.14	006			Mean	8.32	8.87			Sex	1	5.384	8.14	.006			SD	.60	.99			Within	70	.661					SE	.10	.17										CV	7.21	11.16										1	37	35														Length o	f digit one							Mean	7.68	7.54			Sex	1	.317	.97	.327			SD	.58	.56			Within	70	.326					SE.	.10	.10										V	7.55	7.43											37	35									Table 14.—Continued.		Caa	tinga	Сетгадо			Analysis of vari					-------	----------	-------	---------------	---	---------	------------------	------	--------------	--			ీ	δδ	δδ Υ Υ	Factor	df	MS	F	Significance						Length	of digit three							Mean	66.70	67.77		Sex	1	20.54	5.71	.020			SD	2.12	1.63		Within	70	3.60					SE	.35	.28									CV	3.18	2.41									n	37	35												I enoth	of digit four							Mean	49.43	50.23	zengm	Sex	1	11.400	6.58	.012			SD	1.24	1.40		Within	70	1.732	0.56	.012			SE SE	.20	.24		VV ILIIIII	70	1.732					CV	2.51	2.79									n .	37	35									11	37	33												Length	of digit five							Mean	47.27	47.66		Sex	1	2.692	1.30	.259			SD	1.41	1.48		Within	70	2.074					SE	.23	.25									CV	2.98	3.11									n	37	35												Tib	ia length							Mean	15.08	15.14	1.0	Sex	1	.069	.11	.739			SD	.68	.88		Within	70	.615		.137			SE	.11	.15		***************************************	, 0	.015					CV	4.51	5.81									n	37	35												Calc	ar length							Mean	5.57	5.86	Caic	Sex	1	1.600	4.60	027			SD	.56	.60		Within	1 70	1.508 .334	4.52	.037			SE	.09	.10		VV Itliiii	70	.334					CV	10.05	10.24									1	37	35																							Nosei	eaf length							Mean	5.05	4.89		Sex	1	.510	1.84	.180			SD	.52	.53		Within	70	.278					SE	.09	.09									CV	10.30	10.84									1	37	35												Greatest	length of skull							Mean	22.58	22.59		Sex	1	.001	.00	.944			SD	.43	.37		Within	68	.161					SE	.07	.07									CV	1.90	1.64									n	37	33												Condul	basal length							Mean	21.33	21.36	Comyre	Sex	1	.012	.08	.784			SD	.46	.33		Within	67	.163	.00	./04			SE	.08	.06		** 1611111	07	.103					CV	2.16	1.54									n .	36	33									11		~~								Table 14.—Continued.		Caa	tinga	Cerrado			Analysis of vari	ance			------	--------------	------------	--------------------	------------------	--------	------------------	-------	-------------			<i>దే</i> దే	99	ేరే 99	Factor	df	MS	F	Significano					Postorbita	l constriction						1ean	4.22	4.30	1 051070114	Sex	1	.109	4.12	.046		D	.13	.19		Within	69	.026	7.12	.040		E				VV 1[11111	09	.020					.02	.03								V	3.08	4.42									37	34											Masto	id breadth						lean	9.08	9.01		Sex	1	.068	1.79	.185		D	.16	.23		Within	67	.038				E	.03	.04								V	1.76	2.55									36	33											Rreadth	of braincase						ean	8.39	8.31	Dreadin	Sex	1	.114	3.68	.059		D				Within	69	.031																																																																																																																																																																																																																																																																																																																																																																																																																					
5.00	.037		3	.19	.16		** : []]]]	07	.031					.03	.03								V	2.26	1.93									37	34											Rostro	ıl breadth						lean	3.62	3.53		Sex	1	.150	6.88	.011)	.16	.14		Within	69	.022				Ξ	.03	.02								V	4.42	3.97									37	34											II dala	C 1									Height	of braincase			0.3	071		ean	8.73	8.75		Sex	1	.002	.03	.871)	.26	.24		Within	59	.062				E	.05	.05								V	2.98	2.74									32	29											Breadth across	the upper mola	ers					lean	5.10	5.14		Sex	1	.024	.97	.328		D	.16	.16		Within	57	.025	.,,	.520		E	.03	.03		VV ILIIIII	37	.023														V	3.14 32	3.11 27									32	21											Breadth across	the upper canir	ies					lean	3.71	3.56		Sex	1	.314	14.57	<.001)	.15	.15		Within	58	.022				Ξ	.03	.03								V	4.04	4.21									32	28											Lenoth of the	naxillary toothr	ow						7.75	7.01	sengin of the r			.049	1.10	.298		lean	7.75	7.81		Sex	1		1.10	.298)	.25	.16		Within	57	.045				E	.04	.03								V	3.23	2.05									32	27											Length of the uppe	r molariform to	othrow					ean	5.82	5.86		Sex	1	.028	1.01	.318)	.18	.15		Within	57	.028				E	.03	.03								ïV	3.09	2.56									32	27							Table 14.—Continued.		Caa	tinga	Сегг	rado		_	Analysis of vari	ance			------------------------	-------	-------	------	-----------------	-----------------	-----	------------------	------	--------------			ðð	99	ేరే	φφ	Factor	df	MS	F	Significance						Width of th	e widest molar						Mean	.92	.96			Sex	1	.022	5.38	.024		SD	.07	.05			Within	58	.004				SE	.01	.01									CV	7.61	5.21									n	32	28												6	Greatest lengti	h of the mandib	le					Mean	15.71	15.78			Sex	1	.076	.53	.470		SD	.45	.29			Within	69	.145				SE	.07	.05									$\mathbb{C}\mathbf{V}$	3.86	1.84									n	37	34												Lei	ngth of the m	andibular tooth	row					Mean	8.12	8.07			Sex	1	.033	.66	.419		SD	.20	.25			Within	59	.050				SE	.04	.05									CV	2.46	3.10									n	32	29												I	Length of the	coronoid proces	S					Mean	3.87	3.79			Sex	1	.110	2.38	.128		SD	.21	.22			Within	67	.050				SE	.03	.04									CV	5.43	5.80									n	37	32								Caatingas where it was usually associated with serrote habitats, but it was locally abundant in open areas of Cerradão or in Cerrado habitats on the Chapada do Araripe. In the Caatingas population, 44% of the 25 captured individuals were males, hence, the sexes occur in equal proportion (Binomial Test, P > .05). In contrast, only 21% of the 270 captured specimens in the Cerrado were males; this indicates that males and females occur in significantly different proportions (Binomial Test, P < .01) on the Chapada do Araripe. Morphometric data are reported for Brazilian specimens of *A. g. geoffroyi* by Dobson (1878), Lima (1926), and Cunha Vieira (1942). More recently, Anderson (1957) was unable to detect statistically significant secondary sexual variation in large samples of males and females from Chiapas, Mexico. He did, however, find forearm length and skull length to be significantly different for specimens from South America and Chiapas. Statistically significant secondary sexual variation in specimens from the Northeast of Brazil is evidenced by three external and five cranial characters; geographic variation between Caatingas and Cerrado habitats is statistically significant for two external and four cranial characters (Table 15). ### Subfamily Carolliinae ### Carollia perspicillata (Linnaeus, 1758) This frugivore was abundant and ubiquitous in all habitats of the Caatingas and Cerrado; it was frequently found roosting in man-made structures in association with Glossophaga soricina. Of the three subspecies currently recognized, C. p. perspicillata is the designation applied to specimens from the Northeast of Brazil (Jones and Carter, 1976). Fruits of Vismia composed the major portion of this species' diet on the Chapada do Araripe. Of the 467 captured adult specimens from Cerrado and Cerradão habitats, 42% were males; the proportion of males and females were not statistically equal (Binomial Test, P < .01). Although significant, the magnitude of difference between males and females was small; this suggests that factors other than social structure (for example, increased catchability of less maneuverable pregnant females may inflate their Table 15.—Summary statistics for external and cranial characters (mean; standard deviation, SD; standard error of the mean, SE; coefficient of variation, CV; sample size, n) of Anoura geoffroyi males and females from both Caatinga and Cerrado biomes. A two-way analysis of variance (Model I) with replication is presented for each character. The existence of significant secondary sexual or geographic variation is indicated by P values less than or equal to .050.		Caa	tinga	Cer	rado			Analysis of vari	ance			--------	------------	-------	----------	---------	--------------------------------	----	------------------	-------	-------------			ే	99	ే	QQ	Factor	df	MS	F	Significano						Total	l length						1ean	63.73	63.57	65.45	67.85	Area	1	137.287	23.85	<.001		D	2.57	2.88	2.44	1.84	Sex	1	19.198	3.34	.073		E	.78	.77	.55	.41	$A \times S$	1	24.901	4.33	.042		ČV	4.03	4.53	3.73	2.71	Error	61	5.756	4.55	.042			11	14	20	20	Elloi	01	5.750					11	14	20													ot length						1ean	10.27	10.79	10.80	10.55	Area	1	.324	.54	.466		D	.65	.58	1.11	.51	Sex	1	.264	.44	.510		E	.20	.16	.25	.11	$A \times S$	1	2.219	3.69	.059		CV	6.33	5.38	10.28	4.83	Error	61	.602					11	14	20	20											Ear	length						1ean	14.55	14.43	14.35	14.65	Area	1	.003	.00	.949		D	1.04	1.02	.67	.49	Sex	1	.128	.21	.649		E	.31	.27	.15	.11	$A \times S$	1	.663	1.08	.302		CV	7.15	7.07	4.67	3.34	Error	61	.611					11	14	20	20											Traou	s length						Loon	6 27	5 71	5.90	5.70	Area	1	.571	1.66	.203		Mean	6.27	5.71				1					D	.65	.47	.64	.57	Sex	1	2.193	6.36	.014		E	.20	.13	.14	.13	$\mathbf{A} \times \mathbf{S}$	1	.490	1.42	.238		CV	10.37	8.23	10.85	10.00	Error	61	.345				l	11	14	20	20												m length						Aean 💮	42.82	42.14	42.80	43.00	Area	1	2.683	2.46	.122		D	1.17	.54	1.06	1.21	Sex	1	.861	.79	.378		E	.35	.14	.24	.27	$A \times S$	1	2.921	2.68	.107		CV	2.73	1.28	2.48	2.81	Error	61	1.091				ı	11	14	20	20											W_{i}	eight						1ean	15.50	14.36	15.13	15.55	Area	1	2.550	2.07	.155		D	1.14	1.34	1.00	1.03	Sex	1	1.964	1.60	.211		E	.34	.36	.22	.23	$\mathbf{A} \times \mathbf{S}$	1	9.370	7.61	.008		CV	7.35	9.33	6.61	6.62	Error	61	1.231				1	11	14	20	20	21101	•										of digit one						Лean	8.00	7.93	8.45	8.15	Area	1	1.719	7.27	.009		SD		.48	.51	.49	Sex	1	.526	2.22	.141		SE	.45 .14		.11	.11	$\mathbf{A} \times \mathbf{S}$	1	.199	.84	.363				.13				61		.04	.505		CV	5.63	6.05	6.04	6.01	Error	01	.237				ı	11	14	20	20												f digit three						Mean	84.91	84.50	85.75	85.50	Area	1	12.918	1.68	.200		SD	4.23	1.99	2.63	2.37	Sex	1	1.656	.22	.644		SE	1.28	.53	.59	.53	$A \times S$	1	.097	.01	.911		CV	4.98	2.36	3.07	2.77	Error	61	7.691					11	14	20	20						Table 15.—Continued.			ıtinga		rrado	-		Analysis of vari				-------------	--------------	-----------	------------	-------------	--------------------------------	----	------------------	------	--------------			రే రే	δδ	ే	QQ	Factor	df	MS	F	Significance						Length o	f digit four						Mean	62.00	60.36	61.65	61.10	Area	1	.588	.17	.678		SD	1.84	1.74	2.01	1.71	Sex	1	18.330	5.44	.023		SE	.56	.46	.45	.38	$A \times S$	1	4.553	1.35	.250		CV	2.97	2.88	3.26	2.80	Error	61	3.370	1.55	.230		1	11	14	20	20	EHOI	01	3.570				-	••	• •	20		C. D. S. C.						1	54.03	52.71	54.30		f digit five		0.17	00	0.46		Mean	54.82	52.71	54.20	53.40	Area	1	.017	.00	.946		SD SD	1.54	1.94	2.44	1.57	Sex	1	32.144	8.43	.005		E	.46	.52	.55	.35	$\mathbf{A} \times \mathbf{S}$	1	6.481	1.70	.197		CV	2.81	3.68	4.50	2.94	Error	61	3.811					11	14	20																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																					
20												length						Mean	16.64	16.21	16.55	16.65	Area	1	.465	.88	.353		SD	.67	.43	.89	.75	Sex	1	.395	.74	.392		ΣE	.20	.11	.20	.17	$A \times S$	1	1.039	1.96	.167		CV	4.03	2.65	5.38	4.50	Error	61	.531					11	14	20	20											Calcai	r length						1ean	3.27	3.21	3.10	2.95	Area	1	.728	2.30	.134		D	.65	.70	.45	.51	Sex	1	.166	.52	.472		E	.20	.19	.10	.11	$A \times S$	1	.032	.10	.752		- V	19.88	21.81	14.52	17.29	Error	61	.316		.,52			11	14	20	20	2	0.	.510								Nosele	af length						Mean	3.82	3.71	4.10	3.90	Area	1	.833	3.16	.081		D	.60	.47	.55	.45	Sex	1	.352	1.33	.253		E	.18	.13	.12	.10	$A \times S$	1	.035	.13	.716		CV	15.71	12.67	13.41	11.54	Error	61	.264					11	14	20	20											Greatest le	ngth of skull						1ean	24.76	24.34	24.95	24.83	Area	1	1.740	8.04	.006		D	.43	.34	.62	.38	Sex	1	1.165	5.38	.024		E	.13	.09	.14	.08	$A \times S$	1	.350	1.62	.209		CV	1.74	1.40	2.48	1.53	Error	61	.217					11	14	20	20											Condylob	asal length						⁄1ean	24.10	23.67	24.11	24.06	Area	1	.591	2.54	.116		SD	.39	.37	.64	.40	Sex	1	.891	3.84	.055		SE	.12	.10	.14	.09	$A \times S$	1	.532	2.29	.136		CV	1.62	1.53	2.65	1.66	Error	61	.232	/	.150		1	11	14	20	20		J.									Zvanna	tic breadth						Mean	10.85	10.83	10.94	10.86	Area	1	02.1	4.4	513		SD						1	.031	.44	.513			.35	.23	.26	.19	Sex	l	.019	.28	.602		SE CV	.12	.10	.07	.07	A×S	1	.083	.12	.732		CV n	3.23 8	2.12 6	2.38 14	1.75 8	Error	32	.070						D	14	X						Table 15.—Continued.		Caa	tinga		rado			Analysis of var				----------	-----------	-------	------------	----------------	--------------------------------	-------	-----------------	-------	-------------			<i>88</i>	99	ð <i>ð</i>	99	Factor	df	MS	F	Significano						Postorbital	constriction						Mean	5.13	5.04	5.19	5.17	Area	1	.130	3.08	.085		SD	.16	.24	.23	.18	Sex	1	.038	.89	.349		SE	.05	.06	.05	.04	$A \times S$	1	.018	.43	.513		CV	3.12	4.76	4.43	3.48	Error	61	.042	.+3	.515		1	11	14	20	20	EHOI	01	.042				.1	11	14	20													d breadth						Mean	10.30	10.12	10.36	10.30	Area	1	.217	2.69	.106		SD	.26	.28	.28	.30	Sex	1	.217	2.69	.106		SE	.08	.08	.06	.07	$A \times S$	1	.054	.67	.418		CV	2.52	2.77	2.70	2.91	Error	61	.081				1	11	14	20	20											Breadth o	of braincase						Mean	9.71	9.61	9.78	9.80	Area	1	.255	5.20	.026		SD	.12	.24	.21	.26	Sex	1	.023	.46	.500		SE	.04	.06	.05	.06	$A \times S$	1	.061	1.25	.268		CV	1.24	2.50	2.15	2.65	Error	61	.049				1	11	14	20	20	2	•					•	••	• •	20		l breadth						4	4.20	4.14	4.21				000	40	522		Mean	4.28	4.14	4.31	4.16	Area	1	.009	.40	.532		SD	.17	.17	.13	.14	Sex	1	.323	14.86	<.001		SE	.05	.05	.03	.03	$\mathbf{A} \times \mathbf{S}$	1	.000	.00	.988		CV	3.97	4.11	3.02	3.37	Error	61	.022				1	11	14	20	20											Height o	f braincase						Mean	9.92	9.66	9.89	9.94	Area	1	.214	3.91	.053		SD	.14	.29	.23	.23	Sex	1	.156	2.86	.096		SE	.05	.08	.05	.05	$A \times S$	1	.363	6.64	.013		CV	1.41	3.00	3.33	2.31	Error	61	.055				ì	9	14	20	20											readth across	the upper mole	ars					100-	(24	(15					010	20	507		Mean	6.24	6.15	6.24	6.21	Area	1	.010	.30	.587		SD	.10	.16	.22	.19	Sex	1	.053	1.53	.221		SE	.03	.05	.05	.04	$\mathbf{A} \times \mathbf{S}$	1	.019	.54	.465		CV	1.60	2.60	3.53	3.06	Error	58	.034				1	9	13	20	20												the upper cani	nes					Mean	4.93	4.52	5.02	4.66	Area	1	.166	6.79	.102		SD	.16	.17	.16	.14	Sex	1	2.033	83.24	<.001		SE	.05	.05	.04	.03	$A \times S$	1	.011	.43	.513		CV	3.25	3.76	3.19	3.00	Error	58	.024				1	9	13	20	20										L	ength of the m	axillary toothi	row					Mean	9.41	9.19	9.44	9.39	Area	1	.183	2.76	.102		SD	.31	.19	.26	.27	Sex	1	.256	3.88	.054		SE	.11	.05	.06	.06	$A \times S$	1	.114	1.73	.193		SE CV	3.29	2.07	2.75	2.88	Error	58	.066	1.73	.173		V 1	3.29 9	13	2.75	2.88	EITOF	30	.000				•	,	13			un alauifa	othuo					4	7.07	7.60			molariform to		121	1.05	170		Mean	7.87	7.68	7.87	7.87	Area	1	.121	1.95	.168		SD	.27	.25	.24	.25	Sex	1	.125	2.02	.161		SE	.09	.07	.05	.06	$\mathbf{A} \times \mathbf{S}$	1	.125	2.02	.161		CV	3.43	3.26	3.05 20	3.18 20	Error	58	.062				n	9	13								Table 15.—Continued.		Caa	atinga	Ce	rrado			Analysis of var	iance			------------------------	------	--------	------	-----------------	-----------------	-----	-----------------	-------	--------------			88	99	ిం	φφ	Factor	df	MS	F	Significance						Width of the	widest molar						Mean	1.19	1.17	1.14	1.19	Area	1	.004	1.05	.309		SD	.06	.05	.06	.07	Sex	1	.002	.62	.436		SE	.02	.01	.01	.02	$A \times S$	1	.015	4.01	.050		$\mathbb{C}\mathbf{V}$	5.04	4.27	5.26	5.88	Error	58	.004				ı	9	13	20	20										(Greatest length	of the mandib	le					Mean	8.08	7.74	8.17	8.20	Area	1	1.113	8.34	.005		SD	.40	.32	.44	.29	Sex	1	.376	2.82	.099		SE	.12	.08	.10	.07	$A \times S$	1	.505	3.78	.056		CV	4.95	4.13	5.39	3.54	Error	61	.134				ı	11	14	20	20										Le	ngth of the ma	ındibular tooth	row					Mean	9.88	9.62	9.95	9.78	Area	1	.195	3.27	.076		SD	.28	.19	.23	.27	Sex	1	.649	10.90	.002		SE	.09	.05	.05	.06	$A \times S$	1	.030	.50	.483		$\mathbb{C}V$	2.83	1.98	2.31	2.76	Error	58	.060				ı	9	13	20	20											Length of the	coronoid proces	SS					Mean	4.38	3.92	4.34	4.13	Area	1	.094	1.93	.170		SD	.31	.18	.18	.23	Sex	1	1.713	35.27	<.001		SE	.09	.05	.04	.05	$A \times S$	1	.239	4.92	.030		CV	7.08	4.60	4.15	5.67	Error	61	.049				n	11	14	20	20						sample frequency, resulting in unequal sex ratios in large samples) affect the observed proportion of the sexes. In the Caatingas, 47% of the 366 captured adult specimens were males; the sexes occurred in statistically equal frequency (Binomial Test, P > .05). Although a great deal of information is available on the morphometric characteristics of C. perspicillata (see Swanepoel and Genoways, 1979), little has been published on specimens from Brazil. Hahn (1907), Cunha Vieira (1942), Pine (1972), Pirlot (1972), and Taddei (1975b) have reported measurements from Brazil, but only Taddei (1975b) has performed rigorous statistical analyses. He found that females are larger on the average than males when considering external characters, but statistically different for only four of the 17 characters (headbody length, ear length, forearm length, and length of metacarpal II). Conversely, on the average, males are larger than females when considering a group of 15 cranial characters, but only one character, mastoid breadth, is statistically significantly different. Tamsitt and Valdivieso (1963) state that males and females from Colombia do not differ in size, and that specimens on opposite sides of the Andes do not differ in any character. Only two external characters (total length and weight) exhibit statistically significant sexual variation in specimens from Northeast Brazil, and no trend is apparent with regard to average size relationships between the sexes. However, when considering cranial characteristics, the sample means of males are generally larger than those of females and for six characters, statistically significant differences are detected (see Table 16). Caatingas specimens have larger sample means than Cerrado specimens for 11 of the 15 analyzed cranial characters; statistically significant differences are indicated for six characters (Table 16). Size trends for external characters are not apparent and only two characters (tragus length and weight) have statistically distinguishable means. ## Subfamily Stenodermatinae *Sturnira lilium* (E. Geoffroy, 1810) Of the six tentatively recognized subspecies, S. l. lilium is the designation properly applied to specimens from the Northeast of Brazil (Jones and Car- Table 16.—Summary statistics for external and cranial characters (mean; standard deviation, SD; standard error of the mean, SE; coefficient of variation, CV; sample size, n) of Carollia																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																				
perspicillata males and femlaes from both Caatinga and Cerrado biomes. A two-way analysis of variance (Model I) with replication is presented for each character. The existence of significant secondary sexual or geographic variation is indicated by P values less than or equal to .050.		Caa	tinga	Cer	rado			Analysis of var	iance			------------------------	-------------	-------	-------	--------	--------------	----	-----------------	------------	--------------			ే దే	QQ	88	99	Factor	df	MS	F	Significance						Total	length						Aean	72.80	75.65	71.95	73.45	Area	1	46.513	3.49	.066		D	3.76	4.02	2.80	3.90	Sex	1	94.613	7.09	.009		E	.84	.90	.63	.87	$A \times S$	î	9.113	.68	.411		CV	5.16	5.31	3.89	5.31	Error	76	13.338	.00	,411		1	20	20	20	20	LITOI	70	15.550					20	20	20								_					length						1ean	10.70	11.05	10.75	11.30	Area	1	.450	.15	.700		D	1.92	1.85	1.68	1.46	Sex	1	4.050	1.34	.250		E	.43	.41	.38	.33	$A \times S$	1	.200	.07	.797		CV	17.94	16.74	15.63	12.92	Error	76	3.015					20	20	20	20											Hindfo	ot length						1ean	11.85	11.65	11.60	11.75	Area	1	.113	.15	.701		D	.88	.59	1.05	.91	Sex	ì	.013	.02	.898		E	.20	.13	.23	.20	$A \times S$	i	.613	.81	.372		CV	7.43	5.06	9.05	7.74	Error	76	.759	.01	.512			20	20	20	20	Elloi	70	.139					20	20	20												Ear	length						1ean	19.55	19.30	19.00	19.15	Area	1	2.450	2.46	.121		D	1.10	1.03	1.03	.81	Sex	1	.050	.05	.823		E	.25	.23	.23	.18	$A \times S$	1	.800	.80	.373		CV	5.63	5.34	5.42	4.23	Error	76	.996					20	20	20	20											Tragu	s length						1ean	7.70	7.90	8.35	8.30	Area	1	5.513	13.62	<.001		D	.66	.64	.49	.73	Sex	1	.113	.28	.600		E		.14	.11	.16	A×S	1	.313	.28 .77	.382			.15							. / /	.302		CV	8.57	8.10	5.87	8.80	Error	76	.405					20	20	20	20												m length						Aean 💮	42.70	42.95	42.25	42.70	Area	1	2.450	1.11	.295		D	1.87	1.10	1.37	1.49	Sex	1	2.450	1.11	.295		E	.42	.25	.31	.33	$A \times S$	1	.200	.09	.764		CV	4.38	2.56	3.24	3.49	Error	76						20	20	20	20											W	eight						A ean	18.72	20.88	18.50	18.70	Area	1	28.561	6.02	.016		D	1.35	3.30	1.33	2.11	Sex	î	27.848	5.87	.018		E	.30	.74	.30	.47	$A \times S$	1	19.208	4.05	.048		CV	7.21	15.80	7.19	11.28	Error	76	4.742	4.03	.0-0			20	20	20	20	EHOI	70	7./72				l	20	20	20													f digit one						Mean	10.85	10.95	11.10	11.30	Area	1	1.800	4.97	.029		D	.49	.69	.64	.57	Sex	1	.450	1.24	.268		SE	.11	.15	.14	.13	$A \times S$	1	.050	.14	.711		$\mathbb{C}\mathbf{V}$	4.52	6.30	5.77	5.04	Error	76	.362				n	20	20	20	20						Table 16.—Continued.		Caat	tinga	Cer	rado			Analysis of varia	ince			------	----------	-------	-------	-------------	--------------------------------	-----	-------------------	------	--------------			ే	δδ	ేరే	φç	Factor	df	MS	F	Significance						Length of	digit three						Mean	89.60	90.80	89.65	90.50	Area	1	.313	.03	.860		SD	3.24	2.93	3.63	2.78	Sex	1	21.013	2.10	.151		SE	.72	.66	.81	.62	$A \times S$	1	.613	.06	.805		CV	3.62	3.23	4.05	3.07	Error	76	9.994				n	20	20	20	20												f digit four						Mean	65.35	65.50	65.50	65.50	Area	1	.113	.03	.860		SD	1.69	1.85	2.07	1.93	Sex	1	.113	.03	.860		SE	.38	.41	.46	.43	$A \times S$	1	.113	.03	.860		CV	2.59	2.82	3.16	2.95	Error	76	3.573	.00	.000		n	20	20	20	20	Elioi	, 0	3.3.3								Length o	of digit five						Mean	64.50	64.30	64.00	64.95	Area	1	.113	.03	.871		SD	1.73	2.08	2.56	1.79	Sex	1	2.813	.66	.419		SE	.39	.47	.57	.40	$A \times S$	1	6.613	1.55	.217		CV	2.68	3.23	4.00	2.76	Error	76	4.265				n	20	20	20	20											Tibia	length						Mean	19.80	19.60	19.70	19.60	Area	1	.050	.04	.851		SD	.83	.82	1.38	1.54	Sex	1	.450	.32	.574		SE	.19	.19	.31	.34	$A \times S$	1	.050	.04	.851		CV	4.19	4.18	7.01	7.86	Error	76	1.408				n	20	20	20	20											Calca	r length						Mean	7.70	7.95	7.50	8.15	Area	1	.000	.000	1.000		SD	.87	1.23	.89	1.04	Sex	1	4.050	3.91	.052		SE	.19	.28	.20	.23	$A \times S$	1	.800	.77	.382		CV	11.30	15.47	11.87	12.76	Error	76	1.036				n	20	20	20	20											Nosele	af length						Mean	6.60	6.65	6.45	6.40	Area	1	.800	1.73	.192		SD	.75	.75	.61	.60	Sex	1	.000	.000	1.000		SE	.17	.17	.14	.13	$A \times S$	1	.050	.11	.743		CV	11.36	11.28	9.46	9.38	Error	76	.462				n	20	20	20	20											Greatest le	ngth of skull						Mean	22.26	22.00	22.10	21.77	Area	1	.722	3.99	.049		SD	.43	.28	.45	.52	Sex	1	1.741	9.61	.003		SE	.10	.06	.10	.12	$A \times S$	1	.025	.14	.714		CV	1.93	1.27	2.04	2.39	Error	76	.181				n	20	20	20	20												asal length						Mean	20.23	20.03	20.05	19.81	Area	1	.780	4.33	.041		SD	.46	.36	.35	.51	Sex	1	.946	5.25	.025		SE	.10	.08	.08	.11	$\mathbf{A} \times \mathbf{S}$	1	.010	.06	.813		CV	2.27	1.80	1.75	2.57	Error	76	.180				n	20	20	20	20								5.60	5	5.63		l constriction		027	70	276		Mean	5.68	5.55	5.63	5.51	Area	1	.037	.79	.376		SD	.19	.20	.18	.27	Sex	1	.300	6.59	.012		SE	.04	.05	.04	.06	$\mathbf{A} \times \mathbf{S}$	1	.001	.02	.876		CV	3.35	3.60	3.20	4.90	Error	76	.046				n	20	20	20	20						Table 16.—Continued.		Caa	atinga	Cei	тado			Analysis of var	riance	G: 12			----------	-------	--------	-------------	---------------	--------------------------------	--------	-----------------	--------------	--------------	--			ేరే	φρ	<i>ే</i> చే	φφ	Factor	df	MS	F	Significance							Mastoia	d breadth							Mean	10.87	10.86	10.97	10.83	Area	1	.025	.25	.616			SD	.38	.30	.31	.24	Sex	1	.113	1.16	.285			SE .	.09	.07	.07	.05	$\mathbf{A} \times \mathbf{S}$	1	.072	.74	.391			CV	3.50	2.76	2.83	2.22	Error	76	.097	./-	.371				20	20.76	20	20	EHOI	70	.097					1	20	20	20		C1 :												of braincase							1ean	9.75	9.65	9.75	9.73	Area	1	.032	.51	.477			SD	.21	.31	.25	.22	Sex	1	.072	1.15	.287			SE	.05	.07	.06	.05	$A \times S$	1	.032	.51	.477			CV	2.15	3.21	2.56	2.26	Error	76	.063					1	20	20	20	20												Rostra	l breadth							/lean	5.19	5.03	5.05	4.94	Area	1	.276	8.21	.005			SD	.17	.21	.19	.16	Sex	1	.351	10.43	.002			SE	.04	.05	.04	.04	$A \times S$	1	.015	.45	.505			CV	3.28	4.17	3.76	3.24	Error	76	.034					1	20	20	20	20													f braincase							1000	10.97	10.80	10.94			1	021	27	.605			Mean	10.87	10.89	10.84	10.85	Area	1	.021	.27				SD	.30	.18	.37	.23	Sex	1	.003	.04	.842			SE	.07	.04	.08	.05	$\mathbf{A} \times \mathbf{S}$	1	.000	.00	.968			CV	2.76	1.65	3.41	2.12	Error	76	.079						20	20	20	20													the upper mole	ars						Mean	3.02	8.07	7.95	7.89	Area	1	.288	5.39	.023			SD	.24	.25	.18	.25	Sex	1	.001	.01	.923			SE	.05	.06	.04	.06	$A \times S$	1	.061	1.13	.291			CV	2.99	3.10	2.26	3.17	Error	76	.053					1	20	20	20	20											В	readth across	the upper cani	nes						Mean	5.30	5.03	5.17	4.98	Area	1	.171	6.44	.013			SD	.18	.13	.16	.17	Sex	1	.035	38.95	<.001			SE SE	.04	.03	.04	.04	$A \times S$	1	.036	1.36	.247			CV	3.40	2.58	3.09	3.41	Error	76	.027	1.50	.247			~ Y 1	20	20	20	20	LIIO	70	.027					•	20	_0			axillary toothi	row.							7.61	7.54				OW 1	112	2.28	.135			Mean	7.61	7.54	7.53	7.47	Area	1	.113		.133			SD	.34	.14	.15	.20	Sex A × S	1	.085	1.71 .000	1.000			SE	.08	.03	.03	.05		1	.000	.000	1.000			CV	4.47	1.86	1.99	2.68	Error	76	.049					1	20	20	20	20													molariform to	othrow						Mean	5.97	5.93	5.79																																																																																																																																																																																																																																									
5.93	Area	1	.162	3.09	.083			SD	.20	.17	.33	.19	Sex	1	.050	.95	.332			EΕ	.05	.04	.07	.04	$A \times S$	1	.162	3.09	.083			CV	3.35	2.87	5.70	3.20	Error	76	.052					ì	20	20	20	20												Width of the	widest molar							Mean	1.61	1.56	1.53	1.54	Area	1	.050	5.47	.022			SD	.11	.09	.07	.10	Sex	1	.013	1.37	.246			SE	.02	.02	.02	.02	$A \times S$	1	.018	1.97	.165			CV	6.83	5.77	4.58	6.49	Error	76	.009						20	20	20	20							Table 16.—Continued.		Caa	atinga	Ce	rrado			Analysis of var	iance			------	-------	--------	-------------	-----------------	-----------------	------	-----------------	-------	--------------			ే.ే	99	<i>దేదే</i>	QQ	Factor	df	MS	F	Significance					(Greatest length	of the manaib	ole					Mean	14.78	14.71	14.73	14.53	Area	1	.253	1.73	.193		SD	.46	.33	.34	.39	Sex	1	.378	2.58	.112		SE	.10	.08	.08	.09	$A \times S$	1	.091	.62	.433		CV	3.11	2.24	2.31	2.68	Error	76	.146				n	20	20	20	20										Le	ngth of the mo	andibular tooth	irow					Mean	8.21	8.13	8.13	8.01	Area	1	.181	3.17	.079		SD	.23	.23	.25	.25	Sex	1	.200	3.51	.065		SE	.05	.05	.06	.06	$A \times S$	1	.008	.14	.709		CV	2.80	2.83	3.08	3.12	Error	76	.057				n	20	20	20	20											Length of the	coronoid proces	SS					Mean	5.33	5.18	5.25	5.14	Area	1	.072	1.29	.261		SD	.24	.18	.19	.32	Sex	1	.338	6.03	.016		SE	.05	.04	.04	.07	$A \times S$	I	.013	.22	.638		CV	4.50	3.47	3.62	5.23	Error	76	.056				n	20	20	20	20						ter, 1976). This frugivore was uncommon in the Caatingas where it was primarily restricted to Caatinga Alta habitats. $S.\ l.\ lilium$ was also uncommon in both Cerrado and Cerradão habitats of the Chapada do Araripe. Less than 14% of the 22 specimens captured on the Chapada were males; the sex ratio was clearly unequal (Binomial Test, P < .01). The small sample from the Caatingas precludes analysis concerning sex ratios. Vismia is an important component of this bat's diet on the Chapada do Araripe; no other species of fruit was found in its digestive tract. An extensive list of authors who have reported morphometric data on *S. lilium* is cited by Swanepoel and Genoways (1979). However, only three authors, Lima (1926), Cunha Vieira (1942), and Taddei (1975b), include Brazilian specimens in their work and only Taddei (1975b) performs rigorous statistical analyses of individual and secondary sexual variation. He found that *S. lilium* males have larger sample means than females, but that statistically significant variation could not be detected for a suite of 17 external mensural characters. On the other hand, statistically significant secondary sexual variation is apparent for all but two of the 17 cranial characters analyzed, and in all cases, male sample means are larger than female sample means. The results of a statistical analysis of a sample of *S. lilium* from the Northeast of Brazil yields similar results (see Table 17). Only a single external char- acter (total length) exhibits statistically significant secondary sexual variation and no pattern could be detected when comparing male and female sample means. Males have consistently larger sample means than females for all 16 cranial characters and half of them exhibit statistically significant variation. At least in terms of skull morphology, *S. lilium* is clearly dimorphic with males being larger than females. # Uroderma magnirostrum Davis, 1968 This frugivore is a monotypic species (Jones and Carter, 1976) which was very rare in the Caatingas and on the Chapada do Araripe. The specimens listed by Mares et al. (1981) as U. bilobatum from the Northeast of Brazil were in fact U. magnirostrum. Other than the original work of Davis (1968), only a few isolated measurements have been reported by Jones et al. (1971) for *U. magnirostrum* from Nicaragua. Selected measurements (after Swanepoel and Genoways, 1979) are reported here for an adult male and female from the Chapada do Araripe and two adult females from the Caatingas (total length: 61, 60, 60, 60; tail length: -, -, -, -; hindfoot length: 11, 11, 10, 11; ear length: 16, 16, 16, 17; greatest length of skull: 23.8, 22.6, 23.0, 23.3; condylobasal length: 22.1, 20.7, 21.2, 21.4; zygomatic breadth: 12.5, 12.4, 12.8, 13.0; postorbital construction: 6.1, 5.9, 5.9, 5.7; breadth of braincase: 9.7, 9.5, 9.4, 9.7; length of the maxillary toothrow: 8.4, 7.8, 8.0, 8.0; and breadth across the Table 17.—Summary statistics for external and cranial characters (mean; standard deviation, SD; standard error of the mean, SE; coefficient of variation, CV; sample size, n) of Sturnira lilium males and females from both Caatinga and Cerrado biomes. A two-way analysis of variance (Model I) with replication is presented for each external character; the existence of significant secondary sexual or geographic variation is indicated by P values less than or equal to .050. Due to small sample sizes for the cranial characters, data from both biomes were combined to determine the existence of significant (P < .050) secondary sexual variation via a one-way analysis of variance with replication.		Caa	tinga	Cer	rado		,	Analysis of vari	ance			------	-------	-------	-------	---------	---------------	----	------------------	-------	--------------			రేరే	ŞŞ		φŷ	Factor	df	MS	F	Significance						Tota	llength						Mean	64.33	59.00	60.67	59.95	Area	1	7.629	2.26	.145		SD	1.16	2.00	2.31	1.81	Sex	1	37.795	11.21	.003		SE	.67	1.00	1.33	.42	$A \times S$	1	21.964	6.52	.017		CV	1.80	3.39	3.81	3.02	Error	25	3.371	0.52	.017		n	3	4	3	19	Ziioi	23	3.371								Hindfo	ot length						Mean	12.00	11.50	11.67	11.74	Area	1	.010	.03	.858		SD	0	.58	.58	.56	Sex	1	.191	.65	.428		SE	0	.29	.33	.13	$A \times S$	1	.335	1.14	.296		CV	0	5.04	4.97	4.77	Error	25	.294				n	3	4	3	19	2.101	20	.2,								Ear	length						Mean	15.67	15.75	16.00	15.79	Area	1	.143	.15	.706		SD	1.16	.50	1.00	1.03	Sex	1	.017	.02	.897		SE	.67	.25	.58	.24	$A \times S$	1	.089	.09	.766		CV	7.40	3.17	6.25	6.52	Error	25	.983				n	3	4	3	19											Tragu	s length						Mean	6.67	6.75	6.67	6.42	Area	1	.112	.32	.577		SD	.58	.96	.58	.51	Sex	1	.027	.08	.782		SE	.33	.48	.33	.12	$A \times S$	1	.112	.32	.577		CV	8.70	14.22	8.70	7.94	Error	25	.349				n	3	4	3	19											Forear	m length						Mean	43.00	42.00	41.33	42.26	Area	1	2.032	1.05	.315		SD	1.73	1.16	1.16	1.41	Sex	1	.005	.000	.960		SE	1.00	.58	.67	.32	$A \times S$	1	3.842	1.99	.171		CV	4.02	2.76	2.81	3.34	Error	25	1.934				ı	3	4	3	19											W_{i}	eight						Mean	22.33	21.00	20.33	20.66	Area	1	5.659	1.25	.274		SD	.29	1.23	1.26	2.42	Sex	1	1.050	.23	.634		SE	.17	.61	.73	.55	$A \times S$	1	2.836	.63	.436		CV	1.30	5.86	6.20	11.71	Error	25	4.514				n	3	4	3	19											_	of digit one						Mean	10.00	10.00	11.00	10.74	Area	1	3.112	4.40	.046		SD	0	1.16	1.00	.81	Sex	1	.071	.10	.753		SE	0	.58	.58	.19	$A \times S$	1	.071	.10	.753		CV	0	11.60	9.09	7.54	Error	25	.707				n	3	4	3	19												f digit three						Mean	88.33	86.75	86.33	88.79	Area	1	.002	.00	.987		SD	1.53	2.75	1.53	2.51	Sex	1	.786	.14	.716		SE	.88	1.38	.88	.58	$A \times S$	1	16.834	2.90	.101		CV	1.73	3.17	1.77	2.83	Error	25	5.810				n	3	4	3	19						Table 17.—Continued.		Caa	atinga	Ce	errado			Analysis of var	iance			------------	-------------	-------------	-------	------------	---------------	--------	-----------------	-------	--------------			<i>దేదే</i>	QQ	ేరే	99	Factor	df	MS	F	Significance						Length o	f digit four						Mean	65.33	65.25	65.33	66.16	Area	1	.850	.22	.640		SD	1.53	3.10	1.53	1.77	Sex	1	.567	.15	.702		E .	.88	1.55	.88	.41	$A \times S$	1	.850	.22	.640		CV	2.34	4.75	2.34	2.68	Error	25	3.784	.22	.040		1	3	4	3	19	Litoi	23	3.764					3	- '	,		of digit five						⁄lean	61.33	59.75	60.00	61.58		1	252	06	016		D	1.53		1.00	2.39	Area Sex	1	.253	.06	.816		E E	.88	1.26 .63	.58	.54	A × S	1 1	.000 10.317	.00	.998		CV	2.49	2.11	1.67					2.26	.145		. •	3	4	3	3.88 19	Error	25	4.562									length						1ean	16.67	17.75	17.33	17.68	Area	1	.373	.27	.606		D	3.22	.96	.58	.75	Sex	1	2.122	1.55	.224		E	1.86	.48	.33	.17	$A \times S$	1	.554	.40	.530		CV	19.32	5.41	3.35	4.24	Error	25	1.368	.40	.550			3	4	3.33	19	LITOI	23	1.508					J	٦,	3		af length																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																					
	1ean	5.33	5.50	5.67		-	1	012	0.5	922		D D		5.50		5.05	Area	1	.013	.05	.832		E	.58	.58	.58	.52	Sex	1	.207	.71	.408		EV	.33	.29	.33	.12	$A \times S$	1	.629	2.16	.154			10.88 3	10.55 4	10.23	10.30	Error	25	.291					3	4	3	19								22.20	24.42			ngth of skull						1ean	22.20	21.43	21.70	21.74	Sex	1	.194	.97	.335		D	.42	.29	.10	.48	Within	25	.201				E	.30	.14	.06	.11							·V	1.89	1.35	.46	2.21								2	4	3	18											Condylob	asal length						1ean	20.35	19.63	19.83	19.59	Sex	1	.804	4.86	.037		D	.35	.46	.15	.42	Within	25	.166				E	.25	.23	.09	.10							CV	1.72	2.34	.76	2.14								2	4	3	18											Zygoma	tic breadth						lean	13.65	13.38	13.70	13.45	Sex	1	.242	1.93	.177		D	.64	.22	.30	.38	Within	25	.126	,5			E	.45	.11	.17	.09			.120				ŽV	4.69	1.64	2.19	2.83								2	4	3	18												constriction						1ean	6.20	5.93	6.17	5.88	Sex	1	.341	12.41	.002		D	.14	.26	.12	.16	Within	25		12.41	.002		E	.10	.13	.07	.16	** 111111	23	.027				EV	2.26	4.38	1.94	2.72							. V	2.20	4.36 4	3	18										-		d breadth						Mean	12.40	11.90	12.23	11.91	Sex	1	.637	5.88	.023		SD	.57	.29	.35	.33	Within	25	.108	5.00	.023		SE	.40	.15	.20	.08	** 1111111	23	.100				CV	4.60	2.44	2.86	2.77							-	2	4	3	18						Table 17.—*Continued*.		Caat	inga	Cen	ado			Analysis of varia				------------------------	----------	-------------	------------	----------------	-----------------	--------	-------------------	-------	--------------			ే	99	ేరే	\$8	Factor	df	MS	F	Significance						Breadth o	f braincase						Mean	10.41	10.00	10.37	10.20	Sex	1	.191	4.11	.053		SD	.14	.14	.40	.19	Within	25	.046	4.11	.033		SE SE	.14	.07	.23	.05	within	23	.040				CV	1.34	1.40	3.86	1.86									4	3.80	1.80							n	2	4	3													l breadth						Mean	7.15	6.75	6.93	6.67	Sex	1	.454	13.60	.001		SD	.07	.17	.25	.18	Within	25	.033				SE	.05	.09	.15	.04							$\mathbb{C}\mathrm{V}$.98	2.52	.04	.03							า	2	4	3	18											Height o	f braincase						Mean	12.00	11.75	12.40	11.83	Sex	1	.741	11.17	.003		SD	.28	.13	.10	.28	Within	25	.066	11.17	.003		SE	.20	.07	.06	.07	** 1011111	23	.000				CV	2.33	1.11	.81	2.37							1	2.33	4	3	18							•	2	•														the upper mola				0-0		Mean	8.35	8.05	8.27	8.10	Sex	1	.178	3.60	.070		SD	.35	.06	.42	.21	Within	25	.050				SE	.25	.03	.24	.05							$\mathbb{C}\mathbf{V}$	4.19	.75	5.08	2.59							1	2	4	3	18										В	readth across	the upper canin	ies					Mean	6.50	5.95	6.27	5.97	Sex	1	.626	34.01	<.001		SD	0	.10	.15	.14	Within	25	.018				SE	0	.05	.09	.03							$\mathbb{C}\mathbf{V}$	0	1.68	2.39	2.35							n	2	4	3	18										ı		axillary toothr	ow.						6.00	6.53					061	1.22	261		Mean	6.90	6.53	6.57	6.59	Sex	1	.061	1.32	.261		SD	.14	.17	.12	.23	Within	25	.043				SE	.10	.09	.07	.05							CV	2.03	2.60	1.83	3.49							n	2	4	3	18										Lengt	h of the upper	molariform to	othrow					Mean	5.35	5.15	5.27	5.07	Sex	1	.186	6.40	.018		SD	.07	.19	.15	.18	Within	25	.029				SE	.05	.10	.09	.04							CV	1.31	3.69	2.85	3.55							n	2	4	3	18											Width of the	widest molar						Maan	1.80	1.70	1.83	1.81	Sex	1	.003	.38	.543		Mean				.10	Within	25	.009	.30	.545		SD	0	.08 .04	.06 .03	.02	AA ITIIIII	23	.009				SE CV	0	.04 4.71	3.28	5.52							n v	2	4.71	3.20	18								2	7			C . I	,									_	of the mandib						Mean	14.55	14.00	14.40	14.30	Sex	1	.188	1.03	.320		SD	.35	.41	.10	.46	Within	25	.182				SE	.25	.20	.06	.10							CV	2.40	2.93	.69	3.22							n	2	4	3	18							CC 1.1		0		1		--------	-------	--------	-------	---		Table	1 / -	- (O)	บบทบค	7			Caat	inga	Сег	тадо	Analysis of variance								------	--------------	------	----------	----------------	----------------------	-----	------	------	--------------	--	--			<i>దే</i> దే	99	ీ	φ	Factor	df	MS	F	Significance							Le	ngth of the mo	andibular tooth	row							Mean	7.90	7.35	7.53	7.35	Sex	1	.444	9.88	.004				SD	.28	.17	.06	.22	Within	25							SE	.20	.09	.03	.05									CV	3.54	2.31	.80	2.99									n	2	4	3	18													Length of the	coronoid proces	S							Mean	5.60	5.35	5.53	5.42	Sex	1	.093	2.44	.131				SD	0	.13	.25	.21	Within	25	.038						SE	0	.07	.15	.05									CV	0	2.43	4.52	3.87									n	2	4	3	18								upper molars: 9.1, 9.2, 9.5, 9.3). These measurements do not differ from the data reported by Swanepoel and Genoways (1979) for *U. magnirostrum*. ## Vampyrops lineatus (E. Geoffroy, 1810) This frugivore was very abundant and ubiquitous in both Caatingas and Cerrado habitats. Vismia was a very important component in its diet on the Chapada do Araripe. In the Caatingas, 39% of the 217 captured adult specimens were males; 17% of the 229 captured adult specimens from the Cerrado were males. Both populations exhibited unequal sex ratios (Binomial Test, P < .01). Observations at a number of roosting sites in the Caatingas suggested that males often maintain small harems of 7 to 15 females. Single harems occupied each roosting site and individuals within the harem maintained body contact throughout the day. Daily netting records further suggested the existence of male foraging groups. Roosting sites that exclusively contained males were never discovered, perhaps these bachelor males roosted individually and foraged only as a group. Little has been published on intraspecific variation in *V. lineatus* (Swanepoel and Genoways, 1979) and, although frequently considered a monotypic species (see Koopman, 1979, for an alternate view), some confusion exists concerning its systematic relationship with *V. recifinus*. Lima (1926), Cunha Vieira (1942), and Sanborn (1955) reported some cranial measurements on extremely small samples of *V. lineatus* from Brazil, but no quantitative systematic comparisons were attempted. Taddei (1979) found statistically significant secondary sexual variation in only two of 18 cranial measurements (palate width and basal length) and in five of 18 external characters (forearm, metacarpal of digit III, first phalanx of digit III, third phalanx of digit III and the metaearpal of digit IV) for specimens from northwestern São Paulo, Brazil. I was able to detect significant secondary sexual variation in nine of 14 external characters but was unable to detect differences in any of the analyzed cranial characters; statistically significant differences between Caatingas and Cerrado biomes exist in four cranial and four external characters (Table 18). ## Artibeus concolor Peters, 1865 This frugivore is a monotypic species which was apparently absent from the Caatingas and rare on the Chapada do Araripe. Little has been reported on the morphometric characteristics of *A. concolor* (see Swanepoel and Genoways, 1979) and Cabrera (1917) is the only author who has included a specimen of likely Brazilian origin in his work. Although samples of A. concolor from the Chapada do Araripe are small, they are of sufficient size to allow a statistical analysis of individual and secondary sexual variation in this species (Table 19). There is a clear trend in both external and cranial characters for females to have larger sample means than males; statistically significant secondary sexual variation is exhibited by five external and three cranial characters. In all cases of statistical significance, the female mean value is larger than the male mean value which also suggests sex-related size dimorphism in the population. ## Artibeus jamaicensis Leach, 1821 Infraspecific variation in this frugivore is poorly understood for Central and South American populations (see Koopman, 1978, for a discussion of Table 18.—Summary statistics for external and cranial characters (mean; standard deviation, SD; standard error of the mean, SE; coefficient of variation, CV; sample size, n) of Vampyrops lineatus males and females from both Caatinga and Cerrado biomes. A two-way analysis of variance (Model 1) with replication is presented for each character. The existence of significant secondary sexual or geographic variation is indicated by P values less than or equal to .050.		Caa	tinga	Сег	rado			Analysis of varia	ance				------------------------	--------------																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																											
-------	-------	--------	--------------	-----	-------------------	-------	--------------	--			<i>కి</i> కి	QQ	88	QQ	Factor	df	MS	F	Significance							Total	length							Mean	64.40	67.85	63.55	66.70	Area	1	20.000	2.63	.109			SD	2.98	2.60	2.78	2.66	Sex	1	217.800	28.61	<.001			SE	.67	.58	.62	.59	$A \times S$	1	:450	.06	.809			CV	4.63	3.83	4.37	3.99	Error	76	7.612	.00	.005			1	20	20	20	20	Eiio.	, 0	7.012										ot length							Mean	11.20	11.60	11.55	11.90	Area	1	2.113	7.06	.010			SD	.62	.60	.51	.45	Sex	1	2.813	9.40	.003			SE	.14	.13	.11	.10	$A \times S$	1	.013	.04	.839			CV	5.54	5.17	4.42	3.87	Error	76	.299	.04	.037				20	20	20	20	LITOI	70	.299					1	20	20	20														length							Mean	18.05	18.15	17.80	18.15	Area	1	.313	.45	.506			SD	1.05	.67	.89	.67	Sex	1	1.013	1.45	.233			SE	.24	.15	.20	.15	$A \times S$	1	.313	.45	.506			$\mathbb{C}\mathbf{V}$	5.82	3.69	5.00	3.69	Error	76	.701					1	20	20	20	20												Tragu	s length							Mean	7.15	7.35	7.30	7.10	Area	1	.050	.11	.736			SD	.75	.59	.57	.72	Sex	1	.000	.00	1.000			SE	.17	.13	.13	.16	$A \times S$	1	.800	1.84	.179			CV	10.49	8.03	7.81	10.14	Error	76	.436					ı	20	20	20	20												Forear	m length							Mean	47.20	47.45	46.00	47.20	Area	1	10.513	4.09	.047			SD	1.94	2.04	1.12	1.06	Sex	1	10.513	4.09	.047			SE	.43	.46	.25	.24	$A \times S$	1	4.513	1.76	.189			CV	4.11	4.30	2.43	2.25	Error	76	2.570	1.70	.107			1	20	20	20	20	Lifei	70	2.570					•	20	20	20		eight							Mean	23.93	26.44	23.10	26.48	Area	1	3.121	.46	.501			SD	1.32	3.73	1.78	2.90	Sex	1	173.461	25.45	<.001			SE	.30	.84	.40	.65	$A \times S$	1	3.698	.54	.464			CV	5.52	14.11	7.71	10.95	Error	76	6.815	.54	.+0+			n v	20	20	20	20	Lifoi	70	0.813						20	20	20		f digit one							Mean	10.65	10.95	10.60	11.10	Area	1	.050	.09	.759			SD	.75	.76	.75	.64	Sex	1	3.200	6.06	.016									1	.200	.38	.540			SE	.17	.17	.17	.14	A×S			.36	.540			CV	7.04	6.94	7.08	5.77	Error	76	.528					n	20	20	20	20													digit three							Mean	96.80	97.10	94.00	97.35	Area	1	32.513	3.37	.070			SD	3.49	3.70	2.64	2.41	Sex	1	66.613	6.90	.010			SE	.78	.83	.59	.54	$A \times S$	1	46.513	4.82	.031			CV	3.61	3.81	2.81	2.48	Error	76	9.652					n	20	20	20	20							Table 18.—Continued.			tinga		rrado			Analysis of varia		Cin C			------------------------	------------	------------	------------	-------------------	--------------------------------	-----	-------------------	-------	--------------	--			ే	99	ðð	QQ	Factor	df	MS	F	Significance							Length o	f digit four							Mean	70.95	71.90	69.35	71.05	Area	1	30.013	6.48	.013			SD	2.04	2.55	2.03	1.93	Sex	1	35.113	7.58	.007			SE	.46	.57	.46	.43	$A \times S$	1	2.813	.61	.438			CV	2.88	3.55	2.93	2.72	Error	76	4.635	.01	.456			1	20	20	20	20	Lifoi	70	4.033					1	20	20	20		C 1: C												of digit five							Mean	65.75	67.25	64.35	66.10	Area	1	32.513	7.10	.009			SD	1.94	2.86	1.90	1.65	Sex	1	52.813	11.54	.001			SE	.44	.64	.43	.37	$A \times S$	1	.313	.07	.795			$\mathbb{C}\mathbf{V}$	2.95	4.25	2.95	2.50	Error	76	4.577					ì	20	20	20	20												Tibia	length							A ean	18.00	18.35	17.95	18.50	Area	1	.050	.09	.766			SD	.46	.88	.76	.83	Sex	1	4.050	7.24	.009			SE	.10	.20	.17	.19	$A \times S$	1	.200	.36	.552			CV	2.56	4.80	4.23	4.49	Error	76	.559					ì	20	20	20	20												Calca	r length							Mean	4.75	4.30	4.25	4.30	Area	1	1.250	3.41	.069			SD	.85	.57	.44	.47	Sex	1	.800	2.18	.144			SE .	.19	.13	.10	.10	$\mathbf{A} \times \mathbf{S}$	1	1.250	3.41	.069			CV	17.89	13.26	10.35	10.93	Error	76	.367	5.41	.009				20	20	20	20	LITOI	70	.307					•	20	20	20		C 1 + 1-							1000	(05	7.00	(05		af length		112	1.0	(73			Aean	6.95	7.00	6.85	7.25	Area	1	.113	.18	.672			SD	.76	.86	.88	.64	Sex	1	1.013	1.63	.206			E	.17	.19	.20	.14	$\mathbf{A} \times \mathbf{S}$	1	.613	.99	.324			CV	10.94	12.29	12.85	8.83	Error	76	.623						20	20	20	20													ngth of skull							Aean	24.32	24.40	24.38	24.41	Area	1	.018	.09	.762			SD	.46	.37	.56	.35	Sex	1	.061	.31	.579			SE	.10	.08	.13	.08	$A \times S$	1	.013	.06	.801			CV	1.89	1.52	2.30	1.43	Error	76	.195						20	20	20	20												Condylob	asal length							A ean	21.90	22.00	21.83	21.89	Area	1	.181	.78	.379			D	.44	.46	.61	.38	Sex	1	.128	.56	.459			SE .	.10	.10	.14	.09	$A \times S$	1	.005	.02	.889			CV	2.01	2.09	2.79	1.74	Error	76	.231	.02	.007			1	20	20	20	20	21101	7.0	.231						-5				tic breadth							Mean	14.32	14.37	14.25	2.ygomai 14.17	Area	1	.365	2 61	111			onean SD			14.25			1		2.61	.111			SE SE	.34	.40	.37	.39	Sex	1	.005	.03	.858				.08	.09	.08	.09	$A \times S$	1	.098	.70	.405			CV 1	2.37 20	2.78 20	2.60 20	2.75 20	Error	76	.140						20	20	20									4.	(2)	(20	(22		constriction		0.15					Mean	6.26	6.29	6.23	6.22	Area	1	.045	1.07	.304			SD	.19	.20	.18	.25	Sex	1	.001	.03	.871			SE	.04	.04	.04	.06	$\mathbf{A} \times \mathbf{S}$	1	.010	.24	.626			CV	3.04	3.18	2.89	4.02	Error	76	.042					1	20	20	20	20							Table 18.—Continued.		Caa	tinga	Cer	rado			Analysis of vari	ance				-----------------	-------	------------	------------	----------------	--------------------------------	----------	------------------	-------	--------------	--			ేరే	99	ðð	99	Factor	df	MS	F	Significance							Mastoie	d breadth							Aean	12.12	12.22	12.21	12.16	Area	1	.005	.05	.822			D	.26	.31	.24	.32	Sex	1	.013	.14	.707			E	.06	.07	.07	.07	$A \times S$	1	.113	1.28	.262			CV	2.15	2.54	1.97	2.63	Error	76	.088	1.20	.202								EHOI	70	.000						20	20	20	20													of braincase							1ean	10.51	10.56	10.56	10.58	Area	1	.021	.37	.544			D	.29	.26	.23	.16	Sex	1	.021	.37	.544			E	.06	.06	.05	.04	$A \times S$	1	.003	.06	.815			CV	2.76	2.46	2.18	1.51	Error	76	.057						20	20	20	20												Rostra	l breadth							1ean	7.46	7.42	7.03	6.86	Area	1	4.950	57.83	<.001			D .	.26	.31	.36	.21	Sex	1	.210	2.45	.121			E	.06	.07	.08	.05	$A \times S$	1	.078	.91	.342			CV	3.49	4.18	5.12	3.06	Error	76	.086		.5 .2			. •	20	20	20	20	LITOI	70	.000						20	20	20		C burning and							_					f braincase		0.45		430			Aean .	12.48	12.42	12.44	12.36	Area	1	.045	.63	.429			D	.23	.31	.29	.24	Sex	1	.105	1.48	.228			E	.05	.07	.07	.05	$A \times S$	1	.001	.02	.900			CV	1.84	2.50	2.33	1.94	Error	76	.071						20	20	20	20											B	readth across	the upper mol	ars						1ean	10.19	10.40	10.17	10.13	Area	1	.406	5.92	.017			D	.23	.31	.25	.25	Sex	1	.153	2.23	.139			E	.05	.07	.06	.06	$A \times S$	1	.325	4.74	.033			CV	2.26	2.98	2.46	2.47	Error	76	.069						20	20	20	20											R	readth across	the upper cani	nes						100	6.05	6.15	6.09	6.02		nes 1	.045	1.08	.302			Aean	6.05	6.15			Area		.045	.15	.703			D	.22	.23	.15	.21	Sex	1						E	.05	.05	.03	.05	$\mathbf{A} \times \mathbf{S}$	1	.153	3.67	.059			CV	3.64	3.74 20	2.46 20	3.49 20	Error	76	.042					l	20	20															axillary toothi	row						A ean	8.59	8.75	8.76	8.62	Area	1	.010	.11	.738			D	.33	.32	.28	.27	Sex	1	.001	.01	.911			E	.07	.07	.06	.06	$A \times S$	1	.435	4.83	.031			CV	3.84	3.66	3.20	3.13	Error	76	.090					ì	20	20	20																																																																																																																																																				
20											Lengt	h of the upper	molariform to	oothrow						A ean	7.09	7.16	7.05	7.98	Area	1	.231	3.95	.050			SD .	.26	.28	.21	.20	Sex	1	.000	.00	.963			E	.06	.06	.05	.05	$\mathbf{A} \times \mathbf{S}$	1	.105	1.80	.184			CV	3.67	3.91	2.98	2.51	Error	76	.059					- Y 1	20	20	20	20	Litoi	, 0	.007										e widest molar							100-	251	2.52	2.42				.145	8.03	.006			Mean	2.51	2.53	2.42	2.45	Area	1		1.00	.320			SD	.11	.13	.14	.16	Sex	1	.018					SE	.02	.03	.03	.04	$A \times S$	1	.001	.03	.868			CV	4.38	5.14	5.79	6.53	Error	76	.018					1	20	20	20	20							Table 18.—Continued.		Caa	itinga	Ce	rrado			Analysis of varia	ance			------------------------	-------	--------	-------	-----------------	-----------------	------	-------------------	------	--------------			ేరే	φφ	ేరే	φφ	Factor	df	MS	F	Significance					(Greatest length	of the mandib	ole					Mean	16.62	16.74	16.49	16.49	Area	i	.722	4.73	.033		SD	.48	.28	.45	.32	Sex	1	.072	.47	.494		SE	.11	.06	.10	.07	$A \times S$	1	.085	.55	.459		$\mathbb{C}\mathbf{V}$	2.89	1.67	2.73	1.94	Error	76	.153				ı	20	20	20	20										Le	ngth of the mo	ındibular tooth	irow					Mean	9.53	9.60	9.54	9.46	Area	1	.098	1.25	.267		SD	.26	.33	.25	.26	Sex	1	.001	.01	.937		SE	.06	.08	.06	.06	$A \times S$	1	.113	1.44	.235		CV	2.73	3.44	2.62	2.75	Error	76	.078				ı	20	20	20	20											Length of the e	coronoid proce:	SS					Mean	5.69	5.87	5.76	5.74	Area	1	.018	.28	.595		SD	.25	.25	.29	.21	Sex	1	.128	2.03	.159		SE	.06	.06	.07	.05	$A \times S$	1	.181	2.86	.095		$\mathbb{C}\mathbf{V}$	4.39	4.26	5.03	3.66	Error	76	.063				1	20	20	20	20						Table 19.—Summary statistics for external and cranial characters (mean; standard deviation, SD; standard error of the mean, SE; coefficient of variation, CV; sample size, n) of Artibeus concolor males and females from the Cerrado biome. A one-way analysis of variance (Model 1) with replication is presented for each character. The existence of significant secondary sexual variation is indicated by P values less than or equal to .050.		Caa	tinga	Cer	rado			Analysis of variance				------	-----	-------	-------	--------	-----------	----	----------------------	------	--------------		~	ేరే	δδ	ేరే	99	Factor	df	MS	F	Significance						Total	length						Mean			58.33	61.50	Sex	1	30.083	7.02	.024		SD			2.07	2.07	Within	10	4.283				SE			.84	.85							CV			3.55	3.37							n			6	6											Hindfo	ot length						Mean			10.33	10.33	Sex	1	.000	.000	1.000		SD			.52	.52	Within	10	.267				SE			.21	.21							CV			5.03	5.03							n			6	6											Ear	length						Mean			17.00	17.00	Sex	1	.000	.000	1.000		SD			.63	.63	Within	10	.400				SE			.26	.26							CV			3.71	3.71							n			6	6											Tragu	s length						Mean			6.50	7.50	Sex	1	3.000	6.00	.034		SD			.84	.55	Within	10	.500				SE			.34	.22							CV			12.92	7.33							n			6	6						Table 19.—Continued.	_	Caatinga		errado			Analysis of varia				------------------------	-------------	-------------	----------	---------------	-----	-------------------	-------	---			<i>రేరే</i>	99 88	\$\$	Factor	df	MS	F	Significano					Forear	m length						lean .		47.00	47.33	Sex	1	.333	.09	.771		D		2.19	1.63	Within	10	3.733	.07	.,,1				.89	.67	VV IIIIIII	10	3.733				E										CV		4.66	3.44									6	6										W_{i}	eight						1ean		18.42	21.42	Sex	1	27.000	16.45	.002		D		.86	1.59	Within	10	1.642				E		.35	.65							CV		4.67	7.42									6	6									-		of digit one								10.67				750	1.22	.296		/lean		10.67	10.17	Sex	1	.750	1.22	.290		D		.52	.98	Within	10	.617				E		.21	.41							CV		4.87	9.64									6	6										Length o	f digit three						A ean		96.33	99.50	Sex	1	30.083	2.02	.186		D		4.68	2.81	Within	10	14.883				E		1.91	1.15	*********	• •					CV		4.86	2.82									6	6									O		0.11.										of digit four						Mean		73.17	73.50	Sex	1	.333	.04	.850		D		3.49	2.35	Within	10	8.833				EΕ		1.42	.96							CV		4.77	3.20							1		6	6										Length o	of digit five						A ean		69.17	68.67	Sex	1	.750	.07	.794		SD		4.12	1.97	Within	10	10.417	.07	• • • • • • • • • • • • • • • • • • • •				1.68	.80	VV 1111111	10	10.417				SE		5.96	2.87							CV		6	6							l		O												ı length						Aean		18.50	18.33		1	.083	.08	.787		SD		1.05	1.03	Within	10	1.083				SE		.43	.42							$\mathbb{C}\mathbf{V}$		5.68	5.62							ì		6	6										Calca	ır length						A.o.		5.67	6.67	Sex	1	3.000	6.43	.030		Mean		5.67 .82	.52	Sex Within	10	.467	0.75	.0.50		SD				AN TITITI	10	.407				SE SV		.33	.21							$\mathbf{C}\mathbf{V}$		14.46	7.80							1		6	6											af length						Mean		6.67	7.33	Sex	l	1.333	5.00	.049		SD		.52	.52	Within	10	.267				SE		.21	.21							$\mathbb{C}\mathbf{V}$		7.80	7.09									6	6						Table 19.—Continued.		Caatinga	Ce	rrado			Analysis of vari	ance			----------	------------	-------	----------------	-----------------	----	------------------	-------	--------------			δδ <u></u>	ðð	QQ	Factor	df	MS	F	Significance					Greatest le	ngth of skull	*					Mean		21.22	21.23	Sex	1	.001	.00	.957		SD		.40	.40	Within	9	.160	.00	.551		SE		.18	.17	** 1011111	,	.100				CV		1.89	1.88							n		5	6							••		3											-	asal length						Mean		18.84	19.18	Sex	1	.322	3.21	.107		SD		.35	.29	Within	9	.100				SE		.16	.12							CV		1.86	1.51							n		5	6										Zygoma	tic breadth						Mean		13.00	13.17	Sex	1	.076	1.19	.304		SD		.19	.29	Within	9	.064	***/	.551		SE		.08	.12		,	.50 .				CV		1.46	2.20							n		5	6							••		5		constriction								5 44				202	20			Mean		5.44	5.47	Sex	1	.002	.20	.662		SD SE		.09	.10	Within	9	.010				CV		.04	.04									1.65	1.83							n		5	6										Mastoi	d breadth						Mean		11.12	11.53	Sex	1	.466	11.00	.009		SD ·		.13	.25	Within	9	.042				SE		.06	.10							CV		1.17	2.17							n		5	6										Breadth o	f braincase						Mean		9.90	9.80	Sex	1	.027	.35	.568		SD		.31	.25	Within	9	.078	.55	.508		SE		.14	.10	** 1411111		.076				CV		3.13	2.55							n		5	6							-		J		l breadth																Mean		6.96		Sex	1	.611	14.27	.004		SD		.20	.22	Within	9	.043				SE		.09	.09							CV		2.87	2.96							n		5	6										Height o	f braincase						Mean		11.60	11.42	Sex	1	.092	1.02	.339		SD		.27	.32	Within	9	.090				SE		.12	.13							CV		2.33	2.80							n		5	6									,	Breadth across	the upper molar	.5					Mean		9.14	9.48	Sex	1	.322	6.29	.034		SD		.20	.25	Within	9	.051	0.29	.034				.09	.23	** 111111	9	.051				SE										SE CV		2.19	2.64						Table 19.—Continued.		Caa	tinga	Cen	ado			Analysis of varia	nce			-------------	-----	-------	-----------	-----------------	------------------	--------	-------------------	------	--------------		_	ేరే	우우	ేరే	ŞΦ	Factor	df	MS	F	Significance					B	readth across	the upper caning	es					Mean			5.78	5.87	Sex	1	.021	.24	.639		D			.21	.35	Within	9	.087				E			.09	.14	** (**)	,	.007				CV			3.63	5.96							1			5	6							•					axillary toothro	1142					loon			6.82	7.02	Sex	1	.106	2.28	.165		Mean					Sex Within	9	.046	2.20	.103		D .			.26	.17	within	9	.046				SE SV		
6										Lengt	h of the upper	molariform too	othrow					Mean			5.68	6.02	Sex	1	.309	5.00	.052		SD			.18	.29	Within	9	.062				E			.08	.12							CV			3.17	4.82							ı			5	6											Width of the	widest molar						Mean			2.38	2.45	Sex	1	.013	1.91	.200		D			.08	.08	Within	9	.007				SE .			.04	.03							CV			3.36	3.26							ı			5	6										(Greatest length	of the mandibi	le					Aean			13.84	13.98	Sex	1	.056	.55	.478		D			.37	.27	Within	9	.102				E			.16	.11							CV			2.67	1.93							1			5	6										Le	ngth of the mi	andibular toothi	·ow					Mean			7.52	7.63	Sex	1	.035	.45	.519		SD			.37	.18	Within	9	.078				SE			.17	.07	********						CV			4.92	2.36							- ' 1			5	6							_				I enoth of the	coronoid proces	\$					Mean			5.56	5.65	Sex	1	.022	.57	.468		viean SD			.11	.24	Within	9	.039	.57	. 100		SE SE			.05	.10	** !!!!!!!	7	.037							1.98	4.25							CV			1.98 5	6							n			3	0						probable systematic relations), hence it seems premature to assign a subspecific designation to Northeast Brazilian populations. This species was abundant and ubiquitous in both Cerrado and Cerradão habitats on the Chapada do Araripe; *Vismia* was the predominant fruit in its diet there. It was present in the Caatingas and reached its highest density on or near serrotes. The proportion of males was not equal to the proportion of females within either Caatingas or Cerrado biomes (Binomial Tests, P < .01). Twenty-eight percent of the 204 captured adult specimens from the Caatingas were males, whereas 40% of the 270 captured adult specimens from the Cerrado were males. A plethora of references including morphometric data on *A. jamaicensis* are cited by Swanepoel and Genoways (1979), but only Rehn (1900, 1902), G. M. Allen (1908), Andersen (1908), and Cunha Vieira (1942) report measurements from Brazilian specimens. Davis (1970) examined individual, secondary sexual, and geographic variation in specimens of *A. jamaicensis* from Middle America, but no one has examined variation in a statistically rigorous manner for South American specimens. Table 20 details the results of statistical analyses of individual, secondary sexual and geographic variation in Brazilian specimens of A. jamaicensis from Caatingas and Cerrado biomes. Statistically significant geographic variation was detected for seven external and ten cranial characters; in all of these cases, the sample means for Caatingas specimens are larger than the sample means for Cerrado specimens. These two distinct yet geographically proximate populations are clearly dimorphic. Secondary sexual variation is not apparent for A. jamaicensis when considering external morphometric variables (only weight is statistically significant); however, males have larger sample means than females for eleven cranial characters and the variation is statistically significant for five of them. Females, on the other hand, were never larger than males when considering sample means for cranial characters. There is then, appreciable secondary sexual variation exhibited by cranial characters and strong evidence for sexual dimorphism for size with males being larger than females. This is unlike the results obtained by Davis (1970) who found no significant secondary sexual variation in samples from numerous localities in Central America. This failure to detect significant variation was most likely caused by the large quantity of variation attributable to geographic heterogeneity in Davis' samples which was not statistically removed from his analysis of secondary sexual variation. # Artibeus lituratus (Olfers, 1818) Infraspecifie relationships for this species are poorly understood at the present (see for example Koopman, 1976); as such, it is best to avoid using a provisional subspecific appellation for populations from the Brazilian Northeast. This frugivore was widespread and abundant in both Cerrado and Cerradão habitats; *Vismia* was the predominant fruit in its diet on the Chapada do Araripe. It was widespread but uncommon in the Caatingas. Within both Caatingas and Cerrado biomes, the sexes occurred in equal frequency (Binomial Test, P > .05). Of the 44 captured adult specimens from the Caatingas, 45% were males. Similarly, 58% of the 366 captured adults from the Cerrado were males. Morphometric data on *A. lituratus* appears in the literature many times (see Swanepoel and Genoways, 1979), but only G. M. Allen (1908), Andersen (1908), Cunha Vieira (1942), and Pirlot (1972) consider Brazilian specimens. Secondary sexual variation in *A. lituratus* was examined by Anderson (1960) and Tamsitt and Valdivieso (1963), but only the former performed statistical analyses, and there was no significant secondary sexual variation detected in that study. Geographic variation in mensural characters for *A. lituratus* was examined by Dalquest (1950) and Tamsitt and Valdivieso (1963) but no statistical results are reported. Further, individual variation in morphometric eharacters has not been investigated in this species. The results of a statistical analysis of individual, secondary sexual, and geographic variation for populations of A. lituratus from Cerrado and Caatingas biomes are summarized in Table 21. Four external characters exhibit statistically significant secondary sexual variation, whereas none of the cranial characters exhibit statistical differences between males and females. Obvious trends in mean values for males and females are not observed; trends in mean values for Caatingas and Cerrado populations are also not evident. However, a group of five cranial characters exhibits statistically significant secondary sexual variation in which four male mean values are larger than the eomparable female mean values. Only a single external character shows statistically significant sexual variation. Secondary sexual variation occurs in populations of A. lituratus but is not extensive. ## Subfamily Desmodontinae # Desmodus rotundus (E. Geoffroy, 1810) Of the two extant subspecies, D. r. rotundus is the designation properly applied to Northeast Brazilian populations of this sanguinivore (Jones and Carter, 1976). It was common in the Caatingas where it was locally abundant on serrotes. Of the 365 captured adult specimens from the Caatingas, 45% were males; as such the sexes occurred in statistically indistinguishable proportions (Binomial Test, P > .05). It was rare in Cerrado and Cerradão habitats of the Chapada do Araripe, perhaps due to the paucity of livestock and other large wild mammals. Table 20.—Summary statistics for external and cranial characters (mean; standard deviation, SD; standard error of the mean, SE; coefficient of variation, CV; sample size, n) of Artibeus jamaicensis males and females from both Caatinga and Cerrado biomes. A two-way analysis of variance (Model I) with replication is presented for each character. The existence of significant secondary sexual or geographic variation is indicated by P values less than or equal to .050.		Car	atinga	Cer	rrado			Analysis of varia	ance			-----------------	--------	--------	--------	--------	--------------	-----	-------------------	-------	-------------			ేరే	QQ	ేరే	99	Factor	df	MS	F	Significano						Total	length						Mean	74.85	75.85	73.20	73.75	Area	1	70.313	7.36	.008		SD	2.98	3.08	3.12	3.18	Sex	1	12.013	1.26	.266		SE	.67	.69	.70	.71	$A \times S$	1	1.013	.11	.746		CV	3.98	4.06	4.26	4.31	Error	76	9.553				1	20	20	20	20	21101	, 0	7.555					-				ot length						/lean	13.25	13.65	13.30	13.35	Area	1	.313	.43	.513		SD	.79	1.09	.66	.81	Sex	1	1.013	1.40	.241		SE .	.18	.24	.15	.18	$A \times S$	1	.613	.85	.361		CV	5.96	7.99	4.96	6.07	Error	76	.724	.63	.501			20	20	20	20	EHOI	70	./24				l	20	20	20								_					length						Aean	20.55	20.55	20.40	20.35	Area	1	.613	.65	.421		D	.95	.95	.88	1.09	Sex	1	.013	.01	.908		SE .	.21	.21	.20	.24	$A \times S$	1	.013	.01	.908		CV	4.62	4.62	4.31	5.36	Error	76	.938				l	20	20	20	20											Tragu	s length						Aean	8.15	8.20	8.10	8.10	Area	1	.113	.34	.563		D	.59	.62	.55	.55	Sex	1	.013	.04	.847		E	.13	.14	.12	.12	$A \times S$	1	.013	.04	.847		CV	7.24	7.56	6.70	6.79	Error	76	.334				1	20	20	20	20												n length						Mean	58.95	59.45	57.40	57.20	Area	1	72.200	16.43	<.001		D	2.16	1.47	2.14	2.48	Sex	1	.450	.10	.750		E	.48	.33	.48	.56	$A \times S$	1	2.450	.56	.458		CV	3.66	2.47	3.73	4.34	Error	76	4.393					20	20	20	20	Litoi	70	4.373									eight						1 ean	40.98	46.38	39.40	41.03	Area	1	239.778	14.13	<.001		D	3.48	5.84	2.08	4.17	Sex	1	246.753	14.13	<.001		E	.78	1.31	.46	.93	$A \times S$	1	71.253	4.20	.044		CV	8.49	12.59	5.28	10.16	Error	76	16.970	4.20	.044		- v 1	20	20	20	20	EHOI	70	10.970					20	20	20		f digit one						A ean	11.65	11.70	11.75	11.45	Area	1																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																				
.113	.19	.666		D'	.75	.87	.72	.76	Sex	1	.313	.52	.472		SE	.17	.19	.16	.17	$A \times S$	1	.613	1.02	.315		CV	6.44	7.44	6.13	6.64		76	.598	1.02	.515				20			Error	70	.390				1	20	20	20	20												digit three		115 300	5.00	212		Mean	113.30	114.45	111.65	111.30	Area	1	115.200	5.89	.018		SD	4.23	4.81	3.58	4.94	Sex	1	3.200	.16	.687		SE	.95	1.08	.80	1.11	$A \times S$	1	11.250	.58	.451		$\mathbb{C}V$	3.73	4.20	3.21	4.44	Error	76	19.551				n	20	20	20	20						Table 20.—Continued.		Caa	ntinga	Ce	rrado			Analysis of vari	ance			------------------------	------------	------------	------------	-------------	--------------------------------	----	------------------	-------	--------------			ðð	QQ		QQ	Factor	df	MS	F	Significance						Length o	f digit four						Mean	86.45	87.85	84.95	85.25	Area	1	18.050	7.81	.007		SD	2.74	3.27	2.52	4.30	Sex	1	14.450	1.34	.250		SE	.61	.73	.56	.96	$A \times S$	1	6.050	.56	.456		CV	3.17	3.72	2.97	5.04	Error	76	10.766	.50	.430		n	20	20	20	20	Liioi	70	10.700					20	20	20		C 1: : : C							70.00	01.45	77.70		of digit five		171050		00.		Mean	79.80	81.45	77.70	77.65	Area	1	174.050	22.77	<.001		SD	2.44	1.64	2.03	4.22	Sex	1	12.800	1.67	.200		SE	.55	.37	.45	.94	$\mathbf{A} \times \mathbf{S}$	1	14.450	1.89	.173		CV	3.06	2.01	2.61	5.43	Error	76	7.643				J	20	20	20	20												length						Mean	23.60	23.40	23.05	22.80	Area	1	6.613	3.93	.051		SD	1.50	.60	1.23	1.61	Sex	1	1.013	.60	.440		SE	.34	.13	.28	.36	$A \times S$	1	.013	.01	.932		$\mathbb{C}\mathbf{V}$	6.36	2.56	5.34	7.06	Error	76	1.681				n	20	20	20	20											Calca	r length						Mean	6.45	6.50	6.00	6.25	Area	1	2.450	2.92	.091		SD	.83	1.05	.92	.85	Sex	1	.450	.54	.466		SE	.19	.24	.21	.19	$A \times S$	1	.200	.24	.627		$\mathbb{C}\mathbf{V}$	12.87	16.15	15.33	13.60	Error	76	.838				n	20	20	20	20											Nosele	af length						Mean	6.80	6.45	6.50	6.45	Area	1	.450	1.22	.273		SD	.62	.51	.51	.76	Sex	1	.800	2.16	.145		SE	.14	.11	.12	.17	$A \times S$	1	.450	1.22	.273		CV	9.12	7.91	7.85	11.78	Error	76	.370				n	20	20	20	20											Greatest le	ngth of skull						Mean	27.68	27.61	27.30	26.96	Area	1	5.305	17.47	.001		SD	.53	.43	.51	.70	Sex	1	.841	2.77	.100		SE	.12	.10	.11	.16	$A \times S$	1	.338	1.11	.295		CV	1.91	1.56	1.87	2.60	Error	76	.304	1.11	.293		1	20	20	20	20	Elloi	70	.504									asal length						Mean	24.41	24.37	24.17			1	2.485	9.49	.003		SD	.59	.38	.41	.62	Area Sex	1	.465	1.78	.003		SE	.13	.08	.09	.14	$A \times S$	1	.253	.97	.329		CV	2.42	1.56	1.70	2.59	Error	76	.262	.97	.329		n .	20	20	20	2.39	LITOI	70	.202				-	20	20	20		tio huon Jel						Mean	17.20	17.07	16.07		ic breadth		2 121	17.00	- 001			17.20	17.07	16.87	16.62	Area	1	3.121	17.05	<.001		SD	.38	.30	.42	.58	Sex	1	.761	4.16	.045		SE	.08	.07	.09	.13	$A \times S$	1	.061	.33	.567		CV n	2.21 20	1.76 20	2.49 20	3.49 20	Error	76	.183					20	20	20								Man	6.00	(02			constriction						Mean	6.99	6.92	6.99	6.82	Area	1	.050	1.03	.312		SD	.24	.15	.28	.20	Sex	1	.265	5.47	.022		SE	.05	.03	.06	.04	$\mathbf{A} \times \mathbf{S}$	1	.050	1.03	.312		CV	2.43	2.17	4.01	2.93	Error	76	.048				n	20	20	20	20						Table 20.—Continued.	_		tinga	Cen				Analysis of varia				----------	-------------	-------	-------	----------------	--------------------------------	---------	-------------------	-------	--------------			<i>దేదే</i>	99	ðð	99	Factor	df	MS	F	Significance						Mastoia	d breadth						Mean	15.08	14.90	14.95	14.60	Area	1	.925	7.15	.009		SD	.31	.34	.40	.38	Sex	1	1.458	11.28	.001		SE	.07		.09	.09	A×S	1	.144	1.12	.294				.08		2.60		76	.144	1.12	.294		CV	2.06	2.28	2.68		Error	7.6	.129				n	20	20	20	20											Breadth o	of braincase						Mean	12.28	12.27	12.26	12.07	Area	1	.253	4.38	.040		SD	.19	.28	.22	.26	Sex	1	.190	3.29	.074		SE	.04	.06	.05	.06	$A \times S$	1	.171	2.96	.089		CV	1.55	2.28	1.79	2.15	Error	76	.058				n	20	20	20	20												l breadth							0.00	0.03	0.00			,	130	1.54	210		Mean	8.88	9.02	8.98	8.76	Area	1	.128	1.54	.218		SD	.35	.18	.25	.34	Sex	1	.032	.39	.537		SE	.08	.04	.06	.08	$\mathbf{A} \times \mathbf{S}$	1	.648	7.80	.007		CV	3.94	2.00	2.78	3.88	Error	76	.083				1	20	20	20	20											Height o	f braincase						Mean	14.21	14.06	13.99	13.86	Area	1	.882	7.04	.010		SD	.29	.22	.37	.49	Sex	l	.392	3.13	.081		SE	.06	.05	.08	.11	$A \times S$	1	.005	.04	.850		CV	2.04	1.56	2.64	3.54	Error	76	.125				n .	20	20	20	20	2						••	20															the upper mol						Mean	12.44	12.34	12.38	11.99	Area	1	.841	6.82	.011		SD	.34	.22	.34	.46	Sex	1	1.201	9.74	.003		SE	.08	.05	.08	.10	$A \times S$	1	.421	3.41	.069		CV	2.73	1.78	2.75	3.84	Error	76	.123				n	20	20	20	20										B	readth across	the upper cani	nes					Mean	7.95	7.98	7.94	7.53	Area	1	1.035	14.22	<.001		SD	.28	.22	.28	.30	Sex	1	.741	10.18	.002		SE	.06	.05	.06	.07	$\mathbf{A} \times \mathbf{S}$	1	.990	13.60	<.001		CV	3.52	2.76	3.53	3.98	Error	76	.073	15.00	001		n v	20	20	20	20	Liioi	70	.075				1	20	20														axillary tooth	row					Mean	9.83	9.78	9.91	9.60		1	.055	.68	.411		SD	.26	.30	.29	.29	Sex	1	.630	7.82	.007		SE	.06	.07	.06	.06	$A \times S$	1	.325	4.04	.408		CV	2.65	3.07	2.93	3.02	Error	76	.081				n	20	20	20	20										Lengt	h of the upper	molariform to	oothrow					Mean	8.09	8.20	8.10	7.83	Area	1	.648	10.12	.002		SD	.22	.25	.30	.24	Sex	1	.145	2.26	.137		SE SE	.05	.06	.07	.05	A×S	1	.722	11.28	.001		SE CV	2.72	3.05	3.70	3.07	Error	76	.064	11.20	.001			20	20	20	20	EHOI	70	.004				n	20	20	20												-	e widest molar						Mean	3.64	3.62	3.76	3.60	Area	1	.050	2.06	.156		SD	.11	.16	.18	.17	Sex	1	.145	5.95	.017		SE	.03	.04	.04	.04	$A \times S$	1	.098	4.03	.048		CV	3.02	4.42	4.79	4.72	Error	76	.024				n	20	20	20	20						Table 20.—Continued.		Caa	tinga	Cer	тado			Analysis of vari	ance			------------------------	-------	-------	-------	-----------------	-----------------	------	------------------	-------	--------------			ేరే	ŞŞ		QQ	Factor	df	MS	F	Significance					(Greatest length	of the mandib	ole					Mean	18.92	18.81	18.75	18.63	Area	1	.595	4.34	.041		SD	.44	.32	.28	.42	Sex	1	.253	1.85	.178		SE	.10	.07	.06	.09	$A \times S$	1	.001	.01	.928		$\mathbb{C}\mathbf{V}$	2.33	1.70	1.49	2.25	Error	76	.137				ı	20	20	20	20										Le	ngth of the me	andibular tooth	irow					Mean	10.70	10.73	10.60	10.38	Area	1	1.035	13.07	.001		SD	.20	.20	.37	.32	Sex	1	.171	2.16	.146		SE	.05	.04	.08	.07	$A \times S$	1	.325	4.11	.046		CV	1.87	1.86	3.49	3.08	Error	76	.079				1	20	20	20	20											Lengtlı of the	coronoid proce.	ss					Mean	8.14	8.11	8.07	8.09	Area	1	.045	.55	.460		SD	.29	.28	.32	.25	Sex	1	.001	.01	.907		SE	.07	.06	.07	.06	$A \times S$	1	.015	.18	.669		CV	3.56	3.45	3.97	3.09	Error	76	.082				ì	20	20	20	20						Table 21.—Summary statistics for external and cranial characters (mean; standard deviation, SD; standard error of the mean, SE; coefficient of variation, CV; sample size, n) of Artibeus lituratus males and females from both Caatinga and Cerrado biomes. A two-way analysis of variance (Model I) with replication is presented for each character. The existence of significant secondary sexual or geographic variation is indicated by P values less than or equal to .050.		Caa	tinga	Cer	rado			Analysis of vari	ance			------------------------	-------	-------	-------------	--------																																																																																																																																																																																																																																																																																																																																																																			
--------------	----	------------------	-------	--------------			38	99	ී රී	99	Factor	df	MS	F	Significance						Total	length						Mean	88.55	90.40	86.65	91.20	Area	1	6.05	.41	.524		SD	3.52	4.33	3.30	4.11	Sex	1	204.80	13.90	<.001		SE	.79	.97	.74	.92	$A \times S$	1	36.45	2.47	.120		CV	3.98	4.79	3.81	4.51	Error	76	14.73				ı	20	20	20	20											Hindfo	ot lengtlı						Mean	16.65	16.25	16.50	16.30	Area	1	.050	.05	.828		SD	1.09	1.02	.95	1.03	Sex	1	1.800	1.72	.194		SE	.24	.23	.21	.23	$A \times S$	1	.200	.19	.663		$\mathbb{C}V$	6.55	6.28	5.76	6.32	Error	76	1.046				1	20	20	20	20											Ear	lengtlı						Mean	22.65	22.30	22.10	22.70	Area	1	.113	.06	.800		SD	1.09	1.84	.64	1.42	Sex	1	.313	.18	.674		SE	.24	.41	.14	.32	$A \times S$	1	4.513	2.58	.112		$\mathbb{C}\mathbf{V}$	4.81	8.25	2.90	6.26	Error	76	1.748				1	20	20	20	20											Tragu	s length						Mean	8.50	8.50	8.55	8.75	Area	1	.450	.93	.337		SD	.61	.61	.89	.64	Sex	1	.200	.41	.522		SE	.14	.14	.20	.14	$A \times S$	1	.200	.41	.522		$\mathbb{C}\mathbf{V}$	7.18	7.18	10.41	7.31	Error	76	.483				n	20	20	20	20						Table 21.—Continued.		Ca	atinga	Ce	rrado			Analysis of vari	ance			------------------------	-------------	-------------	-------------	-------------	--------------------------------	----	------------------	-------	--------------			ðð	φφ	ತ ತೆ	99	Factor	df	MS	F	Significance						Foreari	m length						Aean .	70.60	71.90	69.75	70.95	Area	1	16.200	1.82	.182		SD	2.56	3.87	2.63	2.69	Sex	ì	31.250	3.51	.065		E	.57	.86	.59	.60	$A \times S$	ì	.050	.01	.941		CV	3.63	5.38	3.77	3.79	Error	76	8.912	.01	.,				20	20	20	EHOI	70	0.712				ı	20	20	20													eight						Aean	69.35	76.15	66.88	74.13	Area	1	101.250	2.36	.128		D	4.74	7.95	3.93	8.37	Sex	1	987.013	23.05	<.001		SE .	1.06	1.78	.88	1.87	$A \times S$	1	1.013	.02	.878		CV	6.83	10.44	5.88	11.29	Error	76	42.816				l	20	20	20	20											Length o	f digit one						1ean	14.30	14.25	14.25	14.55	Area	1	.313	.24	.625		D	1.08	1.07	1.29	1.10	Sex	1	.313	.24	.625		E	.24	.24	.29	.25	$A \times S$	1	.613	.47	.494		CV	7.55	7.51	9.05	7.56	Error	76	1.298	•••			. V	20	20	20	20	Lifoi	70	1.270					20	20	20		C digit thus											digit three			0.0	0.52		Aean	140.90	142.65	141.20	142.50	Area	1	.113	.00	.952		D	4.41	6.83	5.35	5.35	Sex	1	46.513	1.51	.223		E	.99	1.53	1.20	1.20	$A \times S$	1	1.013	.03	.857		CV	3.13	4.79	3.79	3.75	Error	76	30.823					20	20	20	20											Length o	f digit four						1ean	106.30	107.15	105.40	106.50	Area	1	12.013	.56	.455		D	4.66	5.43	3.58	4.61	Sex	1	19.013	.89	.348		E	1.04	1.22	.80	1.03	$A \times S$	1	.313	.01	.904		CV	4.38	5.07	3.40	4.39	Error	76	21.297					20	20	20	20											Lenoth (of digit five						4	00.65	100.05	07.06	99.45		1	8.450	.42	.521		Aean	98.65	100.05	97.95		Area	1					SD	3.72	5.95	3.63	4.33	Sex	1	42.050	2.07	.154		E	.83	1.33	.81	.97	$\mathbf{A} \times \mathbf{S}$	1	.050	.00	.961		CV	3.77	5.95	3.71	4.35	Error	76	20.308					20	20	20	20											Tibia	length						1ean	27.15	27.60	26.95	27.75	Area	1	.013	.01	.929		D	1.76	1.14	1.05	.91	Sex	1	7.813	4.95	.029		E	.39	.26	.21	.21	$A \times S$	1	.613	.39	.535		CV	5.48	4.13	3.90	3.28	Error	76	1.579				1	20	20	20	20											Calca	r length						Mean	8.25	7.90	8.95	8.45	Area	1	7.813	8.80	.004		viean SD	.97	.91	.95	.95	Sex	1	3.613	4.07	.047		SE	.22	.20	.21	.93	$A \times S$	1	.113	.13	.723								76	.888	.1.5	.143		CV n	11.76 20	11.52 20	10.61 20	11.24 20	Error	70	.000					20	20	20		-C1							6.20		6.20		af length		000	00	1.000		Mean	8.30	8.25	8.20	8.35	Area	1	.000	.00	1.000		SD	.66	1.07	.83	.59	Sex	1	.050	.08	.783		SE	.15	.24	.19	.13	$A \times S$	1	.200	.31	.582		$\mathbb{C}\mathbf{V}$	7.95	12.97	10.12	7.07	Error	76	.654				1	20	20	20	20						Table 21.—Continued.		Ca	atinga	Ce	rrado			Analysis of vari	ance			------------------------	-------	--------	----------	-------------	--------------------------------	-----	------------------	-------------	--------------				99	ీ	Şφ	Factor	df	MS	F	Significance						Greatest le	ngth of skull						Mean	31.30	31.33	30.87	31.16	Area	1	1.800	3.18	.079		SD	.62	.82	.79	.76	Sex	1	.512	.90	.345		SE	.14	.18	.18	.17	$A \times S$	1	.338	.60	.442		CV	1.98	2.62	2.56	2.44	Error	76	.566				n	20	20	20	20											Condylot	asal length						Mean	27.87	27.90	27.33	27.68	Area	1	2.926	6.83	.001		SD	.53	.73	.60	.73	Sex	1	.703	1.64	.204		SE	.12	.16	.14	.16	$A \times S$	1	.496	1.16	.285		$\mathbb{C}\mathbf{V}$	1.90	2.62	2.20	2.64	Error	76	.428				1	20	20	20	20											Zygoina	tic breadth						Mean	19.07	18.87	18.66	18.91	Area	1	.722	2.32	.132		SD	.49	.75	.46	.49	Sex	1	.013	.04	.842		SE	.11	.17	.10	.11	$A \times S$	1	1.013	3.25	.075		CV	2.57	3.97	2.47	2.59	Error	76	.311				n	20	20	20	20											Postorbita	constriction						Mean	6.73	6.71	6.72	6.68	Area	1	.010	.13	.720		SD	.25	.27	.32	.27	Sex	1	.021	.27	.605		SE	.06	.06	.07	.06	$A \times S$	1	.003	.04	.842		CV	3.71	4.02	4.76	4.04	Error	76	.078				n	20	20	20	20			10.0								Mastoi	d breadth						Mean	16.82	16.64	16.62	16.70	Area	1	.091	.48	.491		SD	.53	.46	.39	.34	Sex	1	.055	.29	.592		SE	.12	.10	.09	.08	$A \times S$	i	.351	1.84	.179		CV	3.15	2.76	2.35	2.04	Error	76	.190	1.0.	.177		n	20	20	20	20	21101	70	.170								Breadth o	of braincase						Mean	13.36	13.36	13.48	13.41	Area	1	.153	1.13	.290		SD	.27	.36	.45	.37	Sex	1	.028	.21	.650		SE	.06	.08	.10	.08	$A \times S$	1	.021	.16	.694		CV	2.02	2.69	3.34	2.76	Error	76	.135	.10	.074		1	20	20	20	20	201	70	33									breadth						Mean	10.17	10.02	9.82	10.02	Area	1	.780	5.12	.027		SD	.47	.42	.39	.26	Sex	1	.210	1.38	.244		SE	.10	.09	.09	.06	$A \times S$	1	.210	1.38	.244		CV	4.64	4.15	3.97	2.59	Error	76	.153	1.56	.244		1	20	20	20	20	Litoi	70	.133							20		f braincase						Mean	15.77	15.52	15.64	15.56	Area	1	.046	.19	661		SD	.48	.48	.56	.42	Sex	1	.553		.661		SE	.48	.11	.13	.09	$\mathbf{A} \times \mathbf{S}$	1	.153	2.33 .64	.131		CV	3.04	3.09	3.58	2.70	Error	76	.133	.04	.425		1	20	20	20	20	LITOI	70	.231									the upper mole	ars					Mean	13.75	13.57	13.57	13.69	Area	1	.018	.10	.754		SD	.49	.56	.31	.26	Sex	1	.024	.13	.734		SE	.12	.12	.07	.06	$A \times S$	1	.438	2.47			CV	3.56	4.13	2.28	1.90	Error	76	.438 .177	2.47	.120		\ V		7.13	4.40	1.50	LIIUI	7 0	.1//			Table 21.—Continued.		Caa	tinga	Сег	rado			Analysis of vari				------------------------	----------	-------	--------------	-----------------	-----------------	--------	------------------	-------	--------------			ే	ŞΦ	<i>దే</i> దే	Şδ	Factor	df	MS	F	Significance					В	readth across	the upper canii	nes					Mean	8.83	8.85	8.81	9.00	Area	1	.079	.66	.419		SD	.49	.31	.29	.26	Sex	1	.209	1.75	.190		SE	.12	.07	.06	.06	$A \times S$	1	.129	1.08	.302		$\mathbb{C}\mathbf{V}$	5.55	3.50	3.29	2.89	Error	74	.119				ı	18	20	20	20										L	ength of the m	axillary toothr	ow					Mean	10.99	11.03	10.92	11.10	Area	1	.000	.00	.978		SD	.37	.33	.27	.29	Sex	1	.249	2.53	.116		SE	.09	.07	.06	.06	$A \times S$	1	.101	1.02	.315		$\mathbb{C}\mathbf{V}$	3.37	2.99	2.47	2.61	Error	74	.098				ı	18	20	20	20										Lengt	h of the upper	molariform to	othrow					Mean	9.03	9.07	8.95	9.11	Area	1	.009	.12																																																																																																																																																																																																																																																																																																						
.731		SD	.30	.24	.30	.27	Sex	1	.170	2.21	.141		SE	.07	.05	.07	.06	$A \times S$	1	.074	.96	.330		CV	3.32	2.65	3.35	2.96	Error	76	.077				1	18	20	20	20											Width of the	widest molar						Mean	4.70	4.06	4.10	4.12	Area	1	.038	1.22	.272		$^{\mathrm{SD}}$.18	.20	.17	.17	Sex	1	.000	.01	.917		SE	.04	.04	.04	.04	$A \times S$	1	.002	.07	.787		$\mathbb{C}\mathbf{V}$	4.42	4.93	4.15	4.13	Error	74	.031				1	18	20	20	20										(Greatest length	of the mandil	ole					Mean	21.60	21.66	21.10	21.48	Area	1	2.245	6.92	.010		SD	.44	.80	.44	.52	Sex	1	.968	2.98	.088		SE	.10	.18	.10	.12	$A \times S$	1	.512	1.58	.213		CV	2.04	3.69	2.09	2.42	Error	76	.324				1	20	20	20	20										Le	ngth of the mo	ındibular tooth	row					Mean	12.19	12.22	11.98	12.32	Area	1	.069	.47	.495		SD	.33	.48	.40	.29	Sex	1	.670	4.58	.036		SE	.08	.11	.09	.06	$A \times S$	1	.464	3.17	.079		CV	2.71	3.93	3.34	2.35	Error	76	.146				า	18	20	20	20											Length of the c	coronoid proce	SS					Mean	9.99	9.79	9.53	9.60	Area	1	2.113	11.06	.001		SD	.46	.50	.43	.34	Sex	1	.072	.38	.541		SE	.10	.11	.10	.08	$A \times S$	1	.365	1.91	.171		CV	4.60	5.11	4.51	3.54	Error	76	.191				n	20	20	20	20						Numerous authors have published measurements of *D. rotundus* (see Swanepoel and Genoways, 1979) but only Cunha Vieira (1942) included Brazilian specimens. Individual variation was examined by Martinez and Villa-R (1940), however, the sexes were combined in their statistical analysis. Both Hershkovitz (1949) and Husson (1962) noted that males were smaller than females, but rigorous statistical analyses were not performed. Husson (1962) further suggested that differences among samples of *D. rotundus* from Suriname, Colombia, and Trinidad were not appreciable. Table 22 summarizes the results of statistical analyses of individual, secondary sexual and geo- Table 22.—Summary statistics for external and cranial characters (mean; standard deviation, SD; standard error of the mean, SE; coefficient of variation, CV; sample size, n) of Desmodus rotundus males and females from both Caatinga and Cerrado biomes. A two-way analysis of variance (Model I) with replication is presented for each character. The existence of significant secondary sexual or geographic variation is indicated by P values less than or equal to .050.		Caa	itinga	Ce	rrado			Analysis of vari	iance			--------------	---------	--------	-----------	-----------	--------------------------------	----	------------------	-------	-------------				99	්	ÇQ	Factor	df	MS	F	Significano						Total	l length						Mean	77.85	80.95	78.60	81.00	Area	1	1.445	.09	.760		SD	3.70	3.99	3.36	4.62	Sex	1	68.306	4.45	.040		SE	.83	.89	1.50	1.75	$A \times S$	1	1.106	.07	.790		CV	4.75	4.93	4.27	5.70	Error	48	15.348		.,,,		1	20	20	20	20	27101		13.5.0									ot length						A ean	14.15	14.90	14.80	15.14	Area	1	1.800	3.60	.064		D	.75	.64	.84	.69	Sex	1	2.697	5.39	.025		E	.17	.14	.37	.26	$\mathbf{A} \times \mathbf{S}$	1	.374	.75	.391		ČV	5.30	4.30	5.68	4.56	Error	48	.500	.73	.371		1	20	20	5	7	Litoi	40	.500					20	200	J		length						1ean	17.45	18.15	18.00	18.29	Area	1	1.062	.68	.414		D	1.47	.59	1.41	1.80	Sex	1	2.194	1.41	.242		SE	.33	.13	.63	.68	$A \times S$	1	.388	.25	.621		CV	8.42	3.25			Error	48		.23	.021		. Y	20	20	7.83 5	9.84 7	EHOI	40	1.561				ı	20	20	3		o love oth						1ean	0.55	0.25	9.40		s length	1	104	21	(53			8.55	8.35	8.40	8.29	Area	1	.104	.21	.652		D	.61	.59	.55	1.25	Sex	1	.223	.44	.509		E	.14	.13	.25	.47	$\mathbf{A} \times \mathbf{S}$	1	.017	.03	.857		CV	7.13	7.07	6.55	15.08	Error	48	.503				l	20	20	5	7												m length						Aean	60.30	63.55	60.60	65.57	Area	1	12.169	3.04	.088		D	1.49	1.93	2.41	3.05	Sex	1	152.627	38.14	<.001		E	.33	.43	1.08	1.15	$\mathbf{A} \times \mathbf{S}$	1	6.691	1.67	.202		CV	2.47	3.04	3.98	4.65	Error	48	4.001				t	20	20	5	7							_					eight						1ean	39.78	44.58	43.50	47.43	Area	1	97.724	2.33	.133		D	6.99	4.67	8.22	8.16	Sex	1	172.037	4.10	.048		E	1.56	1.04	3.68	3.08	$A \times S$	1	1.715	.04	.841		CV	17.57	10.48	18.90	17.20	Error	48	41.919				1	20	20	5	7											Length o	f digit one						A ean	16.85	17.80	17.80	17.86	Area	1	2.290	1.68	.201		SD	1.18	1.01	1.48	1.35	Sex	1	2.290	1.68	.201		SE	.26	.23	.66	.51	$A \times S$	1	1.800	1.32	.256		CV	7.00	5.67	8.31	7.56	Error	48	1.363				1	20	20	5	7											Length of	digit three						M ean	92.60	99.05	94.60	100.14	Area	1	21.600	1.11	.297		SD	4.84	3.87	4.39	4.60	Sex	1	324.774	16.69	<.001		SE	1.08	.87	1.97	1.74	$A \times S$	1	1.858	.10	.759		CV	5.23	3.91	4.64	4.59	Error	48	19.454				1	20	20	5	7						Table 22.—Continued.		Caa	tinga	Cer	rado			Analysis of vari				-----------------	-------	-------	---------------	-------------	--------------------------------	-------	------------------	-------	--------------			88	δδ	<i>.</i> రేరే	ŞŞ	Factor	df	MS	F	Significance						Length o	f digit four						Mean	75.80	80.50	76.40	81.71	Area	1	7.433	.85	.361		SD	2.63	3.00	2.70	3.82	Sex	1	226.452	25.95	<.001							A×S						SE	.59	.67	1.21	1.44		1	.852	.10	.756		CV	3.47	3.73	3.53	4.68	Error	48	8.726				1	20	20	5	7											Length o	f digit five		,				Mean	73.65	78.85	75.20	79.29	Area	1	8.904	.95	.334						5.06	Sex	1	194.701	20.80	<.001		SD	2.16	2.91	3.42								SE	.48	.65	1.53	1.91	$\mathbf{A} \times \mathbf{S}$	1	2.804	.30	.567		CV	2.93	3.69	4.55	6.38	Error	48	9.361				l	20	20	5	7											Tibia	length						Aean	27.90	29.35	29.00	30.71	Area	1	13.713	8.92	.004		SD	1.29	1.09	1.00	1.60	Sex	1	22.609	14.71	<.001		SE .	.29	.24	.45	.61	$A \times S$	i	.158	.10	.750		CV	4.62	3.71	3.45	5.21	Error	48	1.537	.10	50					5.43	7	LITOI	+0	1.331				1	20	20	3												Greatest le	ngth of skull						Mean	23.89	24.47	23.80	24.50	Area	1	.005	.02	.901		SD	.49	.65	.89	.28	Sex	1	3.511	10.31	.002		SE	.11	.15	.40	.11	$A \times S$	1	.031	.09	.765		CV	2.05	2.66	3.74	1.14	Error	47	.341				- ' 1	20	20	5	6	Ziro:	• • •						20	20	3													asal length						Mean	21.50	21.99	21.66	22.20	Area	1	.293	1.81	.185		SD	.43	.42	.37	.23	Sex	1	2.273	14.04	<.001		SE	.10	.09	.16	.09	$A \times S$	i	.005	.03	.856		CV	2.00	1.91	1.71	1.04	Error	47	.162				1	20	20	5	6											Zveoma	tic breadth						1	12.26	12.62	12.62	12.65	Area	1	.174	2.04	.160		Mean	12.36	12.63	12.62								SD	.28	.31	.19	.35	Sex	1	.187	2.19	.146		SE	.06	.07	.09	.14	$A \times S$	1	.118	1.39	.245		CV	2.27	2.45	1.51	2.77	Error	47	.085				1	20	20	5	6											Postorbital	constriction						Mean	5.37	5.41	5.34	5.57	Area	1	.037	.72	.401		SD	.29	.28	.15	.25	Sex	1	.158	3.06	.087		SE	.06	.06	.07	.10	$A \times S$	î	.071	1.37	.248		CV	5.40	5.18	2.81	4.49	Error	47	.052	1.57	.2 10							EHOI	4/	.032				1	20	20	5	6											Mastoi	d breadth						Mean	12.73	12.84	12.76	12.90	Area	1	.017	.24	.627		SD	.29	.23	.15	.25	Sex	1	.134	1.85	.180		SE	.06	.06	.07	.10	$A \times S$	1	.002	.03	.871		CV	2.28	2.18	1.18	1.94	Error	47	.072				n.	20	20	5	6	201	, ,	.0.2				•	20	_0	Ü		f brainage											of braincase		100	2.15	1.40		Mean	12.44	12.49	12.60	12.55	Area	1	.109	2.15	.149		SD	.20	.27	.14	.12	Sex	1	.000	.00	.974		SE	.05	.06	.06	.05	$A \times S$	i	.019	.38	.539		CV	1.61	2.16	1.11	.96	Error	47	.050					20	20	5	6						Table 22.—Continued.			tinga	Cerr				Analysis of varia				-------------	--------------	-------	-----------	----------------	--------------------------------	---------	-------------------	-------	-------------				φφ		99																																																																																																																																																																																																																																																																																																																																																																																																																																																													
Factor	df	MS	F	Significanc						Rostra	l breadth						Mean	7.83	7.97	7.62	7.73	Area	1	.418	4.65	.036		SD	.25	.34	.35	.29	Sex	1	.132	1.47	.232		SE	.06	.08	.16	.12	$A \times S$	1	.001	.01	.916		CV	3.19	4.27	4.59	3.75	Error	47	.090	.01	.710		n	20	20	5	6	LITOI	7/	.070					20	20	9		<i>c</i> 1 ·											f braincase						Mean	14.43	14.45	14.54	14.68	Area	1	.268	2.16	.149		SD	.37	.31	.11	.51	Sex	1	.057	.46	.501		SE	.08	.07	.05	.21	$A \times S$	1	.033	.26	.611		CV	2.56	2.14	.76	3.47	Error	47	.124				1	20	20	5	6										B	readth across	the upper mol	ars					Aean	6.74	6.93	6.76	6.67	Area	1	.122	1.47	.232		SD	.26	.31	.17	.37	Sex	1	.022	.27	.608		E	.06	.07	.08	.15	$A \times S$	1	.178	2.15	.149		CV	3.86	4.47	2.51	5.55	Error	47	.083				l.	20	20	5	6										Bi	eadth across	the upper cani	nes					⁄lean	6.13	6.36	6.22	6.20	Area	1	.008	.21	.646		D	.14	.20	.11	.32	Sex	1	.095	2.62	.112		E	.03	.05	.05	.13	$\mathbf{A} \times \mathbf{S}$	1	.134	3.71	.060		CV	2.28	3.14	1.77	5.16	Error	47	.036	3.71	.000		. v	20	20	5	6	EHOI	47	.030					20	20														axillary toothi						Aean	3.42	3.32	3.42	3.43	Area	1	.030	1.81	.185		D	.09	.18	.08	.05	Sex	1	.014	.86	.358		E	.02	.04	.04	.02	$A \times S$	1	.025	1.52	.224		CV	2.63	5.42	2.34	1.46	Error	47	.017				1	20	20	5	6										Length	n of the upper	molariform to	oothrow					Aean	1.33	1.31	1.36	1.40	Area	1	.033	3.37	.073		D	.09	.11	.09	.11	Sex	1	.001	.13	.715		E	.02	.02	.04	.05	$A \times S$	1	.007	.65	.424		CV	6.77	8.40	6.62	7.86	Error	47	.010				ļ	20	20	5	6											Width of the	widest molar						⁄lean	.99	.92	.92	.98	Area	1	.000	.01	.926		D	.11	.09	.11	.12	Sex	ì	.000	.01	.926		E	.03	.02	.05	.05	$A \times S$	1	.038	3.54	.066		ČV	11.11	9.78	11.96	12.24	Error	47	.011	5.5 .	.000			20	20	5	6	Error	• •	.011				•	20	20			of the mandi	blo					loan	15.06	15.40			of the mandit		202	5.57	022		Mean SD	15.06 .40	15.49	15.50	15.67 .35	Area	1	.802	5.56	.023				.38	.32		Sex	1	.750	5.20	.027		SE CV	.09	.08	.15	.14	A×S	1	.143	.99	.324			2.66 20	2.45	2.06 5	2.23 6	Error	47	.144					20	20														ındibular tooth	irow					⁄lean	4.53	4.55	4.52	4.60	Area	1	.004	.12	.734		D	.13	.22	.30	.13	Sex	1	.019	.52	.473		E	.03	.05	.14	.05	$A \times S$	1	.009	.24	.623		CV	2.87	4.84	6.64	2.83	Error	47	.037				1	20	20	5	6						Table 22.—Continued.		Caa	tinga	Cer	rado	Analysis of variance								------	------	-------	------	--------------	----------------------	----	------	------	--------------	--	--			đđ	99	ేరే	ÇÇ	Factor	df	MS	F	Significance							I	ength of the	coronoid proce	SS							Mean	5.72	6.15	5.80	6.00	Area	1	.011	.08	.777				SD	.34	.41	.27	.28	Sex	1	.851	6.59	.014				SE	.08	.09	.12	.12	$A \times S$	1	.113	.88	.353				CV	5.94	6.67	4.66	4.67	Error	47	.129						n	20	20	5	6								graphic variation in populations of D. rotundus from the Northeast of Brazil. In all but one case, female mean values are larger than male mean values and statistically significant secondary sexual variation is revealed for seven external and four cranial characters. The observations of sexual dimorphism by Husson (1962) and Hershkovitz (1949) are statistically corroborated. Cerrado sample means are larger than Caatingas sample means for 19 characters, three of which exhibit statistically significant variation. Caating as specimens have larger sample means than Cerrado specimens for only one character and the difference is not statistically significant. The failure to achieve statistical significance for geographic variation is probably due to the small sample sizes from the Cerrado. However, the consistent direction of the difference between sample means from the Caatingas and Cerrado does suggest the strong possibility of geographic variation within the Northeast of Brazil. # Diphylla ecaudata Spix, 1823 Ojasti and Linares (1971) recognize two subspecies of this sanguinivore; *D. e. ecaudata* is the designation appropriate for specimens from the Northeast of Brazil. This species was rare in the Caatingas and apparently absent from the Chapada do Araripe. Among the authors cited by Swanepoel and Genoways (1979) for contributing knowledge to *D. ecaudata*'s morphometric biology, only Dobson (1878), Lima (1926), and Cunha Vieira (1942) reported measurements from Brazilian specimens. Two adult males and two adult females were collected in the Caatingas; selected morphological measurements (after Swanepoel and Genoways, 1979) are herein reported (Total length: 70, 66, 74, 69; tail length: -, -, -, -; hindfoot length: 15, 13, 15, 12; ear length: 15, 14, 15, 14; greatest length of skull: 21.2, 20.8, 21.2, 21.1; condylobasal length: 18.9, 18.0, 19.0, 18.7; zygomatic breadth: 12.2, 11.6, 12.1, 11.7; postorbital constriction: 6.8, 6.2, 6.5, 6.5; length of the maxillary toothrow: 3.0, 2.9, 3.0, 2.9; and breadth across the upper molars: 5.2, 4.9, 5.0, 5.0). Caatingas specimens are on the average smaller than the group of specimens from North and Central America whose measurements are reported by Swanepoel and Genoways (1979). # Family Natalidae # Natalus stramineus Gray, 1838 This aerial insectivore was apparently absent from the Caatingas and rare on the Chapada do Araripe. Because only two adult male specimens were captured, only select measurements (after Swanepoel and Genoways, 1979) are reported here (total length: 99, 104; tail length: 53, 57; hindfoot length: 9, 8; ear length: 15, 12; greatest length of skull: -, 16.0; condylobasal length: -, 14.9; zygomatic breadth: -, 8.7; postorbital constriction: -, 3.2; breadth of braincase: -, -; length of the maxillary toothrow: -, 6.7; breadth across the upper molars: -, 4.0). Specimens from the Northeast should be included in the subspecies N. s. natalensis because they were captured within the defined range of that subspecies (Goodwin, 1959) and because morphometric comparison with the type specimen indicates correspondence. # Family Furipteridae # Furipterus horrens (F. Cuvier, 1828) This poorly known aerial insectivore was rare in the Caatingas where it was only captured on serrotes. It was apparently absent from all habitats on the Chapada do Araripe. Only one adult male and one adult female specimen were captured, hence selected measurements (after Swanepoel and Genoways, 1979) only will be reported here (total length: 84, 80; tail length: 45, 44; hindfoot length: 6, 6; ear length: 10, 9; greatest length of skull: 12.0, 12.0; condylobasal length: 11.0, 11.0; zygomatic breadth: 7.2, 7.2; postorbital constriction: 2.9, 2.8; breadth of braincase: 5.6, 5.8; length of the maxillary toothrow: 4.3, 4.6; breadth across the upper molars: 4.5, 4.6). Uieda et al. (1980) summarize and present new data on aspects of the biology of *F. horrens*; unfortunately, little can be added from this study. # Family Vespertilionidae Myotis nigricans (Schinz, 1821) This aerial insectivore was rare to common in both Caatingas and Cerrado biomes. Of the three subspecies currently recognized, populations from the Northeast should tentatively be assigned to the subspecies M. n. nigricans (LaVal, 1973); however, further systematic analyses are required to substantiate morphometric homogeneity within the subspecies. The sexes occurred in statistically indistinguishable proportions in both Caatingas and Cerrado biomes (Binomial Test P > .05). Only 39% of the 41 captured adult specimens from the Chapada do Araripe were males while 44% of the 260 captured specimens from the Cerrado were males. M. n. nigricans were frequently found roosting under the roofing tiles of abandoned buildings throughout the Northeast; however, individuals were not found in aggregations of any size. Myers (1978) detected statistical differences in forearm length between specimens of male and female M. nigricans from Paraguay. Williams and Findley (1979) found male sample means consistently smaller than female sample means for six mensural characters; however, only head and body length exhibited statistically significant variation. Table 23 summarizes the results of statistical analyses of individual, secondary sexual and geographic variation in populations of M. nigricans from the Northeast of Brazil. Statistically significant secondary sexual variation occurs only for a single variable, weight; further, a pattern in the relationship between male and female mean values is not apparent. M. nigricans populations from the Northeast of Brazil clearly do not exhibit sexual dimorphism in external and cranial characters. Populations of *M. nigricans* from Caatingas and Cerrado biomes do not exhibit appreciable geographic variation either. Only two characters, calcar length and length from the canine to the last molar in the mandible, exhibit statistically significant variation between Caatingas and Cerrado																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																												
sites; and trends in mean value relationships are not apparent. The Caatingas and Cerrado populations are morphometrically homogeneous. # Eptesicus furinalis D'Orbigny and Gervais, 1847 This aerial insectivore was apparently absent from the Caatingas and rare on the Chapada do Araripe. Williams (1978) suggested that Caatingas specimens of *E. furinalis* are most closely allied with the subspecies *E. f. chapmani*; however, the specimens he utilized were actually a subsample of the specimens caught in Cerrado habitats of the Chapada do Araripe. Samples are small but sufficient for analyzing individual and secondary sexual variation by statistical methods; the results are summarized in Table 24. Females have larger sample means than males for ten external and 14 cranial characters. Males have larger sample means than females for five variables. Three of the characters (forearm length, weight, and greatest length of the maxillary) exhibited statistically significant secondary sexual variation; in all three cases, the male mean value was larger than the female mean value. Further, Williams (1978) suggested that sexual dimorphism existed in the Chapada population of *E. fiurinalis* based upon a multivariate analysis of variation. ## Lasiurus borealis (Muller, 1776) This aerial insectivore was rare on the Chapada do Araripe and apparently absent from the Caatingas. Its range extends from northern North America to southern South America. Samples of *L. borealis* are small, but of sufficient size to attempt statistical analyses of individual and secondary sexual variation (Table 25). Females have larger sample means than males for all characters except postorbital constriction. Statistically significant secondary sexual variation was evidenced by four external and six cranial characters. Sexual dimorphism for size with females larger than males is strongly indicated by the data. This corroborates the findings of Williams and Findley (1979) which also indicated sexual dimorphism. # Lasiurus ega (Gervais, 1856) This aerial insectivore was present but rare in both Caatingas and Cerrado biomes. According to the subspecies ranges suggested by Handley (1960), specimens from the Northeast of Brazil should be Table 23.—Summary statistics for external and cranial characters (mean; standard deviation, SD; standard error of the mean, SE; coefficient of variation, CV; sample size, n) of Myotis nigricans males and females from both Caatinga and Cerrado biomes. A two-way analysis of variance (Model I) with replication is presented for each character. The existence of significant secondary sexual or geographic variation is indicated by P values less than or equal to .050.		Caa	tinga	Cer	rado			Analysis of var	iance			------------------------	-------	-------	-------	--------	--------------------------------	----	-----------------	-------	--------------			88	99	88	φφ	Factor	df	MS	F	Significance						Total	length						Mean	80.65	81.90	81.44	81.75	Area	1	1.912	.19	.661		SD	2.61	3.95	2.61	3.09	Sex	1	11.489	1.17	.283		SE .	.58	.88	.65	.69	$A \times S$	1	4.136	.42	.519		CV	3.24	4.82		3.78	Error	72	9.834	.42	.319					3.20		EHOI	12	9.834				1	20	20	16	20											Tail	length						Aean	35.95	35.45	35.44	35.30	Area	l	2.065	.22	.641		SD	2.50	2.74	2.76	3.98	Sex	1	1.913	.20	.653		E	.56	.61	.69	.89	$A \times S$	1	.618	.07	.798		CV	6.95	7.73	7.79	11.27	Error	72	9.389					20	20	16	20											Hindfo	ot length						1ean	5.95	6.00	5.94	5.90	Area	1	.060	.56	.458		D	.39	0.00	.25	.45	Sex	1	.001	.01	.934		E E	.09		.06	.10	$A \times S$	1	.036	.34					0						.34	.563		CV	6.55	0	4.21	7.63	Error	72	.107				1	20	20	16	20											Ear	length						1ean	12.35	12.20	12.31	12.25	Area	1	.001	.00	.973		D	.75	.77	.79	.85	Sex	1	.213	.34	.561		E	.17	.17	.20	.19	$A \times S$	1	.036	.06	.811		CV	6.07	6.31	6.42	6.94	Error	72	.624				ı	20	20	16	20											Tragu	s length						Aean	7.65	7.55	7.81	7.80	Area	1	.801	2.29	.134		D	.59	.51	.54	.70	Sex	1	.060	.17	.681		SE .	.13	.11	.14	.16	$\mathbf{A} \times \mathbf{S}$	1	.036	.10	.749		CV	7.71	6.75	6.91	8.97	Error	72	.349	.10	. 7 4 9		V	20	20	16	20	EHOI	12	.349					20	20	10		, ,											m length						1ean	34.40	33.85	34.00	33.80	Area	1	.953	.77	.382		D	1.14	.88	1.32	1.11	Sex	1	2.647	2.15	.147		E	.26	.20	.33	.25	$A \times S$	1	.577	.47	.456		CV	3.31	2.60	3.88	3.28	Error	72	1.230				1	20	20	16	20											W	eight						Aean	4.50	4.95	4.34	4.88	Area	1	.252	.85	.359		SD	.46	.63	.44	.60	Sex	1	4.531	15.35	<.001		SE .	.10	.14	.11	.14	$A \times S$	l	.031	.11	.747		CV	10.22	12.73	10.14	12.30	Error	72	.295		., .,		1	20	20	16	20	Lifei	12	.275					20	20	10		C 11 11											of digit one			. = 0			Aean	4.95	4.70	4.63	4.70	Area	1	.497	1.70	.197		SD	.51	.47	.62	.57	Sex	1	.144	.49	.485		SE	.11	.11	.16	.13	$A \times S$	1	.497	1.70	.197		$\mathbb{C}\mathbf{V}$	10.30	10.00	13.39	12.13	Error	72	.293				1	20	20	16	20						Table 23.—Continued.		Caa	itinga	Ce	rrado			Analysis of var	iance			----------	-------	------------	-----------	------------	--------------------------------	---------	-----------------	-------	--------------			88	δδ	ð∂	99	Factor	df	MS	F	Significance						Length o	f digit three						Mean	56.50	56.65	56.06	56.60	Area	1	1.118	.16	.694		SD	2.91	2.23	2.59	2.91	Sex	1	2.224	.31	.580		SE	.65	.50	.65	.65	$A \times S$	1	.707	.10	.755		CV	5.15	3.94	4.62	5.14	Error	72	7.185	.10	.133		n	20	20	16	20	Litoi	12	7.103									of digit four						Mean	47.45	47.10	45.88	47.30	Area	1	8.897	1.51	.223		SD	2.37	2.17	2.47	2.68	Sex	1	5.438	.92	.340		SE	.53	.49	.62	.60	$A \times S$	1	14.827	2.51	.117		CV	4.99	4.61	5.38	5.67	Error	72	5.899	2.51	.11/		n	20	20	16	20	LITOI	12	3.099								Length o	of digit five						Mean	44.45	44.15	43.88	43.85	Area	1	3.603	.78	.381		SD	1.54	2.01	2.16	2.74	Sex	1	.497	.78	.744		SE	.34	.45	.54	.61	$A \times S$	i	.356	.08	.744		CV	3.46	4.55	4.92	6.25	Error	72	.636	.00	./03		n	20	20	16	20	EHOI	12	.030									length						Mean	15.45	15.00	15.19	15.20	Area	1	.018	.03	.869		SD	.95	.80	.75	.77	Sex	1	.901	1.33	.252		SE	.21	.18	.19	.17	$A \times S$	1	1.007				CV	6.15	5.33	4.94	5.07		72		1.49	.226		n .	20	20	16	20	Error	12	.675									r length						Mean	12.60	12.50	12.44	11.50	Area	1	6.360	3.99	050		SD	1.27	1.47	1.26	1.00	Sex				.050		SE	.29	.33	.32	.22		1	5.065	3.18	.079		CV	10.08	11.76	10.13	8.70	$A \times S$	1 72	3.301	2.07	.154		n	20	20	16.13	20	Error	12	1.594									ngth of skull						Mean	13.46	13.50	13.49	13.51	Area	1	.006	06	903		SD	.35	.29	.24	.30	Sex			.06	.803		SE	.08	.07	.06	.07	$A \times S$	1 1	.013	.14	.705		CV	2.60	2.15	1.78	2.22	Error	69	.001 .092	.01	.915		n	20	20	1.78	19	EHOI	09	.092									asal length						Mean	12.81	12.75	12.79	12.71	Area	1	.010	.11	.736		SD	.34	.24	.28	.29	Sex	1	.090	1.07	.305		SE	.08	.06	.08	.07	$\mathbf{A} \times \mathbf{S}$	1	.002	.03	.872		CV	2.65	1.88	2.19	2.28	Error	69	.085	.03	.072		n	20	20	14	19	LITOI	09	.065						_ 0	• •		tic breadth						Mean	8.26	8.30	8.36	8.32	Area	1	054	1.67	202		SD	.17					1	.054	1.67	.202		SE SE	.04	.16	.24	.18	Sex	1	.000	.00	.952		CV	2.06	.04	.08	.05	$\mathbf{A} \times \mathbf{S}$	1	.024	.73	.397		n .	2.00	1.93 19	2.87 8	2.16 12	Error	55	.032							ū		constriction						Mean	3.29	3.25	3.29	3.25	Area	1	.000	.02	.878		SD	.09	.14	.12	.11	Sex	1	.028	2.11			SE	.02	.03	.03	.02	$A \times S$	1	.000		.151		CV	2.74	4.31	3.65	3.38	Error			.02	.878		~ .	20	20	15	20	EHOI	71	.013			Table 23.—Continued.		Caa	tinga	Сеп	ado			Analysis of varia	ince			-------	------	-------	-------------	----------------	--------------------------------	---------	-------------------	------	--------------			ేరే	QQ	ే చే	φφ	Factor	df	MS	F	Significance						Mastoia	d breadth						Mean	6.94	6.93	6.93	6.92	Area	1	.002	.07	.794		SD	.12	.15	.10	.18	Sex	1	.002	.08	.777		SE SE	.03	.03	.03	.04	$A \times S$	1	.002	.02	.887		CV	1.73	2.16																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																									
1.44	2.60	Error	68	.022	.02	.007		n .	20	20	13	19	LITOI	00	.022				11	20	20	13		61								1.1			of braincase		222		200		Mean	6.48	6.40	6.38	6.42	Area	1	.029	1.09	.300		SD	.21	.13	.11	.17	Sex	1	.006	.24	.628		SE	.05	.03	.03	.04	$\mathbf{A} \times \mathbf{S}$	1	.067	2.53	.116		CV	3.24	2.03	1.72	2.65	Error	69	.027				n	20	20	14	19											Rostra	l breadth						Mean	3.50	3.49	3.42	3.50	Area	1	.020	1.00	.322		SD	.11	.13	.13	.18	Sex	1	.020	1.00	.322		SE	.02	.03	.03	.04	$A \times S$	1	.042	2.13	.149		CV	3.14	3.72	3.80	5.14	Error	71	.020				n	20	20	15	20											Height o	f braincase						Mean	6.67	6.70	6.59	6.58	Area	1	.168	3.61	.062		SD	.20	.20	.17	.26	Sex	1	.003	.06	.812		SE	.05	.05	.05	.06	$\mathbf{A} \times \mathbf{S}$	i	.003	.06	.806		CV	3.00	2.99	2.58	3.95	Error	68	.046	.00	.000			20	2.99	13	19	EHOI	00	.040				n	20	20														the upper mole						Mean	5.41	5.41	5.35	5.34	Area	1	.076	2.89	.094		SD	.18	.15	.17	.15	Sex	1	.001	.03	.854		SE	.04	.03	.05	.03	$A \times S$	1	.000	.00	.956		CV	3.33	2.77	3.18	2.81	Error	68	.026				n	20	20	13	19										B	readth across	the upper cani	nes					Mean	3.42	3.48	3.46	3.48	Area	1	.008	.41	.526		SD	.15	.15	.10	.13	Sex	1	.024	1.30	.259		SE	.03	.03	.03	.03	$A \times S$	1	.005	.27	.606		CV	4.39	4.31	2.89	3.74	Error	67	.019				n	20	20	12	19										1.	enoth of the n	naxillary toothi	row					Mean	5.09	5.07	5.11	5.07	Area	1	.005	.28	.599		SD	.19	.11	.14	.10	Sex	1	.019	.98	.325		SE	.04	.02	.04	.02	$A \times S$	1	.003	.14	.709			3.73	2.17	2.74	1.97	Error	70	.003	.14	.709		CV	20	20	14	20	EHOI	70	.019				n	20	20														molariform to	oothrow					Mean	4.22	4.21	4.16	4.22	Area	1	.010	.43	.512		SD	.20	.11	.18	.12	Sex	1	.015	.63	.429		SE	.04	.02	.05	.03	$A \times S$	1	.021	.87	.354		CV	4.74	2.61	4.33	2.84	Error	70	.024				n	20	20	14	20											Width of the	e widest molar						Mean	1.58	1.56	1.58	1.57	Area	1	.001	.12	.726		SD	.06	.08	.11	.08	Sex	1	.003	.37	.543		SE	.01	.02	.03	.02	$A \times S$	1	.000	.03	.868		CV	3.80	5.13	6.96	5.10	Error	70	.007				-	20	20	14	20						Table 23.—Continued.		Caa	tinga	Cer	таdо			Analysis of vari	ance			------	------	-------	------	-----------------	------------------	------	------------------	------	--------------			88	δδ		QQ	Factor	df	MS	F	Significance					(Greatest length	of the mandib	ole					Mean	9.80	9.82	9.84	9.86	Area	1	.033	.44	.510		SD	.30	.26	.27	.27	Sex	1	.007	.10	.757		SE	.07	.06	.07	.06	$A \times S$	1	.000	.00	.998		CV	3.06	2.65	2.74	2.74	Error	68	.075				n	20	20	14	19										Le	ngth of the mo	andibular tootli	irow					Mean	5.55	5.55	5.43	5.43	Area	1	.279	7.75	.007		SD	.21	.15	.17	.22	Sex	1	.000	.00	.961		SE	.05	.03	.05	.05	$A \times S$	l	.000	.00	.961		CV	3.78	2.70	3.13	4.05	Error	68	.036				n	20	20	13	19											Length of the	coronoid proce.	SS					Mean	3.00	3.02	2.91	3.01	Area	1	.045	3.03	.086		SD	.14	.10	.10	.13	Sex	1	.055	3.73	.058		SE	.03	.02	.03	.03	$A \times S$	1	.030	2.01	.161		CV	4.67	3.31	3.44	4.32	Error	67	.015				n	20	20	13	18						Table 24.—Summary statistics for external and cranial characters (mean; standard deviation, SD; standard error of the mean, SE; coefficient of variation, CV; sample size, n) of Eptesicus furinalis males and females from the Cerrado biome. A one-way analysis of variance (Model I) with replication is presented for each character. The existence of significant secondary sexual variation is indicated by P values less than or equal to .050.		Caat	inga	Сег	rado			Analysis of vari	ance			------	------	------	-------	--------	-----------	----	------------------	------	--------------		***	88	φφ		99	Factor	df	MS	F	Significance						Total	length						Mean			96.71	97.40	Sex	1	2.244	.18	.678		SD			3.25	3.68	Within	20	12.651				SE			1.23	.95							CV			3.36	3.78							n			7	15											Tail	length						Mean			39.14	38.33	Sex	1	3.127	.38	.544		SD			1.35	3.31	Within	20	8.210				SE			.51	.85							CV			3.45	8.64							n			7	15											Hindfo	ot length						Mean			7.00	6.33	Sex	1	2.121	2.77	.112		SD			.82	.90	Within	20	.767				SE			.31	.23							CV			11.71	14.22							n			7	15											Ear	length						Mean			13.57	13.67	Sex	1	.043	.07	.799		SD			.98	.72	Within	20	.652				SE			.37	.19							CV			7.22	5.27							n			7	15						Table 24.—Continued.		Caatinga	Cer	rado			Analysis of vari				--------------	----------	-------	----------	---	----	------------------	------	--------------			ðð 9	\$ 88	Şδ	Factor	df	MS	F	Significance					Tragu	is length						1ean		8.14	8.53	Sex	1	.728	1.00	.330		D		.90	.83	Within	20	.730				E		.34	.22	***************************************	20	.,50				v		11.06	8.73							•		7	15									,												m length						1ean		38.86	40.13	Sex	1	7.773	5.44	.030		D		1.35	1.13	Within	20	1.430				E		.51	.29							V		3.47	2.82									7	15										W	eight						Iean		8.36	9.53	Sex	1	6.603	5.37	.031		D		.69	1.25	Within	20	1.230	3.37	.051		E		.26	.32	** 1411111	20	1.230				ZV		8.25	13.12							•		7	15.12									/											Length o	of digit one						1ean		4.86	5.40	Sex	1	1.407	3.33	.083		D		.69	.63	Within	20	.423				E		.26	.16							V		14.20	11.67									7	15										Langth	f digit three												12.107	2.50	122		1ean		67.14	68.80	Sex	1	13.107	2.59	.123		D		2.34	2.21	Within	20	5.063				E		.88	.57							CV		3.48	3.21									7	15										Length o	of digit four						/lean		55.86	57.07	Sex	1	6.982	2.50	.129		D		1.68	1.67	Within	20	2.790	2.50			E		.63	.43	** 1611111	20	2.770				CV		3.01	2.93							. V		7	15									,												of digit five						Aean		49.29	49.87	Sex	1	1.611	.75	.398		D		1.38	1.51	Within	20	2.158				E		.52	.39							CV		2.80	3.03									7	15										Tihi	a length								16.00		_		220	20	502		1ean		16.00	16.27	Sex	1	.339	.30	.592		D		0	1.28	Within	20	1.147				E		0	.33							CV		0	7.87									7	15										Calca	ır length						1 ean		12.57	12.87	Sex	1	.416	.28	.601		SD		1.27	1.19	Within	20	1.472	.20			SE SE		.48	.30	** 1611111	20	1.7/2				SE CV		10.10	9.25							V V		7	15						Table 24.—Continued.		Caat	inga	Cer	rado			Analysis of vari	ance			------------------------	------	------	--------------	-------------	------------------------	-----	------------------	------	--------------			ಕಕ	99	<i>ර්</i> ර්	QQ	Factor	df	MS	F	Significance						Greatest le	ngth of skull						Mean			14.88	14.84	Sex	1	.010	.11	.746		SD			.33	.28	Within	18		.11	.740		SE					vv ittiin	18	.088							.13	.08							CV			2.22	1.89							n			6	14											Condylot	asal length						Mean			14.38	14.39	Sex	1	.000	.00	.993		SD			.28	.30	Within	17	.086	.00	.,,,		SE			.11	.08		• '	.000				CV			1.95	2.08							1			6	13							11			O												Zygoma	tic breadth						Mean			10.52	10.56	Sex	1	.005	.08	.787		SD			.20	.30	Within	13	.072				SE			.08	.10							CV			1.90	2.84							1			6	9										Ü													constriction						Mean			3.59	3.64	Sex	1	.014	.56	.464		SD			.17	.16	Within	20	.025				SE			.06	.04							CV			4.74	4.40							ı			7	15						
					Mastoi	d breadth						11			0.25				0.40				Mean			8.25	8.35	Sex	1	.040	1.01	.327		SD			.15	.21	Within	19	.040				SE			.06	.06							CV			1.82	2.51							1			6	15											Breadth o	f braincase						Mean			7.12	7.25	Sex	1	.080	3.57	.074		SD			.15	.15	Within	19	.022	3.37	.074		SE			.06	.04	** 1111111	19	.022				ČV			2.11	2.07										6	15							1			U												Rostrai	breadth						Mean			4.69	4.83	Sex	1	.104	2.31	.145		D			.25	.19	Within	20	.045				E			.10	.05							CV			5.33	3.93										7	15										,												Height o	^r braincase						Mean			7.42	7.47	Sex	1	.013	.18	.674		D			.31	.24	Within	18	.069				E			.13	.07							·V			4.18	3.21							1			6	14										n		41											the upper mola						Aean			6.46	6.51	Sex	1	.015	.46	.505		SD			.10	.21	Within	20	.033				SE			.04	.05							$\mathbb{C}\mathbf{V}$			1.55	3.23							1			7	15						Table 24.—Continued.		Caai	tinga	Cer	rado			Analysis of vari	ance			--------------	------------	-------	-------	-----------------	------------------	--------	------------------	------	--------------		_	ೆ ಂ	99		99	Factor	df	MS	F	Significance					В	readth across	the upper canin	es					Mean			4.61	4.80	Sex	1	.161	2.30	.146		SD			.20	.29	Within	19	.070		••••		SE			.07	.08	********	• /	.0.0				CV			4.34	6.04							1			7	14												axillary toothre	w.					Aean			5.63	5.65	Sex	1	.003	.06	.810		SD			.10	.19	Within	20	.028	.00	.010		SE			.04	.05	** 1111111	20	.020				CV			1.78	3.36							1			7	15										·	-		- 4 la										molariform to		001	0.6	010		Mean			4.53	4.51	Sex	1	.001	.06	.810		SD ST			.15	.13	Within	20	.019				SE.			.06	.03							CV			3.31	2.88							1			7	15											Width of the	widest molar						I ean			1.94	2.00	Sex	1	.016	2.27	.147		D			.08	.09	Within	20	.007				E			.03	.02							CV			2.29	4.50							1			7	15										(Greatest length	of the mandib	le					A ean			11.43	11.79	Sex	1	.635	9.05	.007		D			.16	.30	Within	20	.070				E			.06	.08							CV			1.40	2.54							1			7	15										Le	ngth of the mo	andibular tooth	row					Mean			6.13	6.20	Sex	1	.024	.66	.425		SD			.18	.20	Within	20	.037				SE.			.07	.05							CV			2.94	3.23							1			7	15										,	Length of the	coronoid proces	S					Mean			4.39	4.42	Sex	1	.006	.19	.668		SD			.17	.17	Within	20	.030				SE			.06	.05		-					CV			3.87	3.85							- '			7	15						considered *L. e. argentinus*. However, he should have used the appellation *L. e. caudatus* (based upon a specimen from Pernambuco) which he puts in synonymy with *L. e. argentinus*, though it (*caudatus*) is the older name (Koopman, in litt.). The morphometric data are pooled from the Caatingas and Cerrado biomes because the samples from each area alone are too small to perform statistical analyses. Table 26 summarizes the results of a statistical analysis of individual and secondary sexual variation in pooled samples. Only a single variable, forearm length, exhibits statistically significant secondary sexual variation. Females tended to have larger sample means than males, especially for ex- Table 25.—Summary statistics for external and cranial characters (mean; standard deviation, SD; standard error of the mean, SE; coefficient of variation, CV; sample size, u) of Lasiurus borealis males and females from the Cerrado biome. A one-way analysis of variance (Model I) with replication is presented for each character. The existence of significant secondary sexual variation is indicated by P values less than or equal to .050.		Caat	inga	Ce	rrado			Analysis of vari	ance			------------------------	------	------	-------	----------------	-------------	----	------------------	------	--------------		_	ೆಕೆ	99	ೆಂೆ	99	Factor	df	MS	F	Significance						Total	llength						Mean			99.67	105.53	Sex	1	64.222	2.78	.140		SD			3.98	6.43	Within	7	23.143				SE			1.63	3.71	********	•	2311.5				CV			3.99	6.10							1			6	3							•			O		length						Mean			41.00	46.00	Sex	1	50.000	7.29	.031		SD			2.90	1.73	Within	7	6.857	1.29	.031		SE					VV I(IIIII	,	0.837				CV			1.18	1.00										7.07	3.76							1			6	3												ot length						Mean			7.33	7.67	Sex	1	.222	.78	.407		SD			.52	.58	Within	7	.286				SE			.21	.33							CV			7.09	7.56							า			6	3											Ear	length						Mean			10.17	10.67	Sex	1	.500	2.33	.171		5 D			.41	.58	Within	7	.214				SE			.17	.33							$\mathbb{C}V$			4.03	5.44							n			6	3											Tragu	s length						Mean			6.00	6.67	Sex	1	.889	2.33	.171		SD			.63	.58	Within	7	.381				SE			.26	.33							$\mathbb{C}V$			10.50	8.70							1			6	3											Forear	ın length						Mean			38.83	40.67	Sex	1	6.722	4.09	.083		SD			1.17	1.53	Within	7	1.643				SE			.48	.88							CV			3.01	3.76							1			6	3											W_{ϵ}	eight						Mean			8.00	8.43	Sex	1	1.389	8.33	.023		SD			.45	.29	Within	7	.167				SE			.18	.17							$\mathbb{C}\mathbf{V}$			5.63	3.44							า			6	3												f digit one						Mean			8.50	9.33	Sex	1	1.389	4.49	.072		SD			.55	.58	Within	7	.310	1.77	.072		SE			.22	.33	** 111111	1	.510				CV			6.47	6.22							n .			6.47	3										U	3						Table 25.—Continued.		Caatinga		errado Factor df			Analysis of var	61 16			------------------------	------------	-------------	------------------	----------------	--------	-----------------	-------	--------------			δδ <u></u>	88	99	Factor	df	MS	F	Significance					Length o	f digit three						lean		77.17	82.67	Sex	1	60.500	5.07	.059		D		2.93	4.51	Within	7	11.929				E		1.20	2.60							V		3.80	5.46							•		6	3									v		of digit four								50.00			1	64.222	15.68	.006		lean		59.00	64.67	Sex	1	64.222	13.08	.006		D		2.37	.58	Within	7	4.095				Ξ		.07	.33							V		4.02	.90									6	3											of digit five		10.000	0.6	204		lean		50.33	53.33	Sex	1	18.000	.86	.384		D		5.35	1.15	Within	7	20.857				Ξ		2.19	.67							V		10.63	2.16									6	3										Tibia	ı length						lean		19.67	21.00	Sex	1	3.556	7.47	.029		D		.82	0	Within	7	.476				Ε		.33	0							V		4.17	0									6	3										Calca	r length						lean		13.17	13.33	Sex	1	.056	.03	.879		D .		1.17	2.08	Within	7	2.214	.02	.0,7		E		.48	1.20	*********	,	2.2.				V		8.88	15.60							•		6	3											ength of skull						r		11.27			1	.376	4.59	.070		lean		11.27	11.70	Sex	1		4.39	.070		D		.08	.52	Within	7	.082				E		.03	.30							V		.71	4.44									6	3											basal length						Iean		10.87	11.33	Sex	1	.436	5.44	.052		D		.16	.46	Within	7	.080				E		.07	.27							V		1.47	4.06									6	3										Zygoma	tic breadth						1ean		8.53	8.80	Sex	1	.142	7.47	.029		D		.10	.20	Within	7	.019				E		.04	.12							V		1.17	2.27									6	3										Postorbita	l constriction						Acce.		4.22			1	.009	.62	.456		1ean		4.23	4.17	Sex Within	1 7	.009	.02	.430		D		.10	.15	within	/	.014				E		.04 2.36	.09 3.60							$\mathbb{C}\mathbf{V}$									Table 25.—Continued.		Caatinga	Cer	Analysis of variance
.033		SE		.06	.07	W Itliiii	,	.021				CV		2.22	1.61							1		6	3									U											Breadth o	of braincase						Mean		6.97	7.07	Sex	1	.020	.87	.381		SD		.10	.23	Within	7	.023				SE		.04	.13							CV		1.43	3.25							n		6	3										Rostra	l breadth						Mean		4.48	4.77	Sex	1	161	4.41	074		SD			.25		1	.161	4.41	.074		SE		.16 .07	.23	Within	7	.036				CV		3.57	5.24																	1		6	3										Height o	f braincase						Mean		8.12	8.13	Sex	1	.001	.01	.924		SD		.27	.12	Within	7	.056				SE		.11	.07							$\mathbb{C}\mathbf{V}$		3.33	1.48							ı		6	3									D	roadth across	the upper mola						11	,					276				Mean		5.27	5.70	Sex	1	.376	11.27	.012		SD		.21	.10	Within	7	.033				SE		.08	.06							CV		3.98	1.75							1		6	3									Bi	readth across	the upper canin	ies					Mean		4.35	4.87	Sex	1	.534	30.72	<.001		SD		.15	.06	Within	7	.017				SE		.06	.03							$\mathbb{C}\mathbf{V}$		3.45	1.23							ı		6	3																					axillary toothro						Mean		3.82	4.00	Sex		.067	4.34	.076		SD		.08	.20	Within	7	.016				SE		.03	.12							CV		2.09	5.00							1		6	3									Lengti	h of the upper	molariform too	othrow					Mean		3.13	3.13	Sex	1	.000	.00	1.000		SD		.10	.15	Within	7	.014	.00	1.000		SE		.04	.08		,	.017				CV		3.19	4.79							1		6	3									Ü												widest molar						Mean		1.38	1.40	Sex	1	.001	.08	.785		SD		.10	0	Within	7	.007				SE		.04	0							$\mathbb{C}\mathbf{V}$		7.25	0							ı		6	3						Table 25.—Continued.		Caatinga		Cerrado		Analysis of variance							------	-------------	----	---------	----------------	----------------------	-----	------	-------	--------------	--			<i>దేదే</i>	φç	ðð	δδ	Factor	df	MS	F	Significance						G	reatest length	of the mandib	le						Mean			8.45	8.93	Sex	1	.467	32.17	<.001			SD			.12	.11	Within	7	.015					SE			.05	.07								CV			1.42	1.23								n			6	3											Ler	igth of the me	andibular tooth	row						Mean			4.47	4.70	Sex	1	.109	6.73	.036			SD			.10	.17	Within	7	.016					SE			.04	.10								CV			2.24	3.62								n			6	3											I	ength of the	coronoid proces	S						Mean			2.65	2.80	Sex	1	.045	4.20	.080			SD			.11	.10	Within	7	.011					SE			.04	.06								CV			4.15	3.57								n			6	3							Table 26.—Summary statistics for external and cranial characters (mean; standard deviation, SD; standard error of the mean, SE; coefficient of variation, CV; sample size, n) of Lasiurus ega males and females from both Caatinga and Cerrado biomes. Due to small sample sizes, data from both biomes were combined to determine the existence of significant (P < .050) secondary sexual variation via a one-way analysis of variance (Model I) with replication.		Caatinga		Сеггадо		Analysis of variance							------	----------	--------	---------	--------	----------------------	----	--------	------	--------------	--				\$5	ేరే	φç	Factor	df	MS	F	Significance							Total	length							Mean	121.50	122.50	120.00	134.00	Sex	1	27.075	1.19	.318			SD	2.12	2.89	_	_	Within	6	22.800					SE	1.50	1.44	_	_								CV	1.75	2.36	_	_								n	2	4	1	1												Tail	length							Mean	57.00	52.50	50.00	52.00	Sex	1	9.633	.80	.404			SD	4.24	2.65	_	_	Within	6	11.978					SE	3.00	1.32	_	_								CV	7.44	5.05	_	_								n	2	4	1	1												Hindfo	ot length							Mean	8.00	7.00	8.00	8.00	Sex	1	1.200	2.57	.160			SD	0	.82	_	_	Within	6	.467					SE	0	.41	_	_								CV	0	11.71	_	_								n	2	4	1	1												Ear	length							Mean	15.50	16.75	16.00	15.00	Sex	1	1.008	.28	.618			SD	2.12	2.22	_	_	Within	6	3.644					SE	1.50	1.10	_	_								CV	13.68	13.25	_	_								n	2	4	1	1							Table 26.—Continued.		Caa	atinga	Cer	rrado			Analysis of vari	ance			------------	-------------	-------------	--------	-----------	---------------	--------	------------------	------	--------------			88	φφ	రేరే	δδ	Factor	df	MS	F	Significance						Tran	us length						Mean	0.50	0.75	10.00				0.08	0.2	075		SD	9.50 .71	9.75	10.00	9.00	Sex	1	.008	.03	.875		SE	.50	.50 .25	_	_	Within	6	.311				CV	7.47	5.13	_	_							n	2	4	1	<u> </u>							**	2	4	1								1.7	46.50	40.50			m length						Mean	46.50	48.50	44.00	49.00	Sex	1	16.133	6.10	.049		SD SE	.71	1.92	_	_	Within	6	2.644				CV	.50 1.53	.96 3.96	_	_							n	2	3.90 4	- 1	_ i							11	2	4	1													eight						Mean	13.75	15.00	13.00	14.50	Sex	1	3.675	.61	.465		SD	1.06	3.39	_	_	Within	6	6.033				SE	.75	1.70	_	_							CV	7.71	22.60		_							n	2	4	1	1											Length o	of digit one						Mean	8.00	8.00	8.00	9.00	Sex	1	.075	.16	.702		SD	0	.82	_	_	Within	6	.467				SE	0	.41	_	_							CV	0	10.25	_	_							n	2	4	1	1											Length o	f digit three						Mean	90.00	90.50	86.00	91.00	Sex	1	7.008	1.32	.294		SD	2.83	1.08	_	_	Within	6	5.311		.2, .		SE	2.00	1.04	-	_							CV	3.14	2.99	_	_							n	2	4	1	1											Length o	f digit four						Mean	70.00	71.25	67.00	71.00	Sex	1	9.075	3.68	.104		SD	1.41	1.50	_	- -	Within	6	2.467	3.08	.104		SE	1.00	.75	_	_	** 1111111	O	2.407				CV	2.01	2.11	_	_							n	2	4	1	1											I enoth (of digit five						Mean	57.50	58.00	55.00	58.00		1	2 222	1.07	220		SD	.71	1.41	-	38.00	Within	1 6	3.333	1.87	.220		SE	.50	.71		_	VV IEIIIII	6	1.778				CV	1.23	2.43	_	_							n	2	4	1	1									·	•		1						Maan	21.50	21.25	21.00		length						Mean SD	21.50	21.25	21.00	22.00	Sex	1	.008	.03	.875		SE	.71	.50	_	_	Within	6	.311				SE CV	.50 3.30	.25 2.35	_	_							n .	2	2.33 4	_ 1	_ 1								2	•									Mas	17.00	17.25	10.00		r length						Mean	17.00	17.25	18.00	19.00	Sex	1	.133	.05	.830		SD	2.83	1.26	_	_	Within	6	2.644				SE CV	2.00	.63	_	_							CV	16.65	7.30	_	_							n	2	4	1	1						Table 26.—Continued.		Caat			rado			Analysis of varia				----------	----------	--------------	-------------	-------------	----------------	----	-------------------	------	--------------			ೆ	φφ	ేరే	99	Factor	df	MS	F	Significance						Greatest le	ngth of skull						Mean	15.00	15.13	14.90	15.50	Sex	1	.114	1.26	.313		SD	.57	.11	14.50	-	Within	5	.091	1.20	.515		SE	.40	.07	_	_	VV Itiliii	3	.071				CV	3.80	.73													_ 1							n	2	3	1												Condylob	asal length						Mean	14.50	14.80	14.50	15.00	Sex	1	.210	4.57	.086		SD	.42	.10	_		Within	5	.046				SE	.30	.06	_	_			,,,,,				CV	2.90	.68	_								n	2	3	1	1							11	2	3	1												Zygoma	tic breadth						Mean	10.55	10.83	10.60	10.80	Sex	1	.114	1.62	.260		SD	.07	.42	_	_	Within	5	.071				SE	.05	.24	_								CV	.66	3.88		_							n	2	3	1	1											D . 1:												constriction	
.772		Mean	8.20	8.23	8.40	8.10		1		.09	.112		SD	.42	.31	_	_	Within	5	.081				SE	.30	.18	_	_							CV	5.12	3.77	_	_							n	2	4	1	1											Rostra	l breadth						Mean	5.85	5.30	5.90		Sex	1	.263	1.14	.335		SD	.07	.62	J.70	- -	Within	5	.231		.555		SE SE	.07	.36	_	_	** 1111111	,	.431					1.20	.36 11.70	_	_							CV			_	1							n	2	3	1												Height o	f braincase						Mean	8.95	8.90	9.20	8.80	Sex	1	.043	1.23	.317		SD	.21	.20	_	_	Within	5	.035				SE	.15	.12	-	_		,					CV	2.35	2.25	_	_							n .	2.33	3	1	1							11	4	3												I		the upper mola	rs					Mean	7.10	6.88	6.90	7.30	Sex	1	.010	.15	.710		SD	.14	.26	_	_	Within	6	.066				SE	.10	.13	_	_								1.97	3.78									CV	1.7/	3.70		_						Table 26.—Continued.		Ca	atinga	Ce	rrado			Analysis of var	iance			------	-------	--------	-------	-----------------	------------------	--------	-----------------	-------	--------------			ðð	99	రేరే	δδ	Factor	df	MS	F	Significance					В	readth across	the upper canin	es					Mean	5.90	5.83	6.10	5.90	Sex	1	.023	.54	.496		SD	.14	.29	_	_	Within	5	.043				SE	.10	.17	_	_							CV	2.37	4.97	_	_							n	2	3	1	1										L	ength of the m	axillary toothro	9w					Mean	5.35	5.37	5.30	5.50	Sex	1	.008	.57	.484		SD	.07	.15	_	_	Within	5	.013				SE	.05	.09	_	_							CV	1.31	2.79	_								n	2	3	1	1										Lengt	h of the upper	molariform too	othrow					Mean	4.15	4.27	4.20	4.50	Sex	1	.043	3.97	.103		SD	.07	.06	_	_	Within	5	.011				SE	.05	.03	_								CV	1.69	1.41	_	_							n	2	3	1	1											Width of the	e widest molar						Mean	2.00	2.08	2.00	2.30	Sex	1	.027	2.38	.174		SD	0	.10	_	_	Within	6	.011				SE	0	.05	_	_							CV	0	4.81	_	_							n	2	4	1	1										(Greatest length	of the mandibl	le					Mean	11.10	11.63	11.30	10.60	Sex	1	.120	.77	.413		SD	.14	.13	_	_	Within	6	.156				SE	.10	.06	_	_							CV	1.26	1.11	_	_							n	2	4	1	1										Le	ngth of the mo	andibular toothr	ow					Mean	6.15	6.20	6.20	5.80	Sex	1	.008	.14	.721		SD	.07	.27	_	_	Within	5	.053				SE	.05	.15	_	_							CV	1.13	4.35	_	_							n	2	3	1	1											Length of the	coronoid process	S					Mean	4.00	3.90	4.00	4.60	Sex	1	.003	.03	.865		SD	0	.25	_	_	Within	6	.095				SE	0	.12	_	_	-		-				CV	0	6.41	_	_							n	2	4	1	1						ternal characteristics, but the relationship between male and female sample means was not consistent enough to suggest the existence of sexual dimorphism in this species. # Family Molossidae Molossops planirostris (Peters, 1865) This fast-flying aerial insectivore was rare in the Caatingas and apparently absent from the Chapada do Araripe. The subspecific status of populations from the Northeast is uncertain. The three captured specimens were obtained from a hollow in a cut tree from Caatinga Alta. Vizotto and Taddei (1976) statistically analyzed individual and secondary sexual variation in M. planirostris. They showed conclusively that males are larger than females on the average and that statistically significant secondary sexual variation oc- curs for most external and all cranial characters analyzed. The three individuals captured from the Caatingas do not constitute a sufficiently large sample for statistical analyses so only selected measurements (after Swanepoel and Genoways, 1979) are presented here for an adult male and two adult female specimens (total length: 96, 93, 92; tail length: 22, 24, 26; hindfoot length: 5, 6, 6; ear length: 16, 17, 14; greatest length of skull: 16.1, 15.1, 15.4; condylobasal length: 15.8, 15.0, 14.9; zygomatic breadth: 11.2, 10.8, 11.0; postorbital constriction: 4.3, 4.1, 4.2; breadth of braincase: 7.8, 7.5, 7.8; length of the maxillary toothrow: 6.5, 6.3, 6.0; breadth across the upper molars: 7.7, 7.7, 7.7). ## Molossops temminckii (Burmeister, 1854) This molossid aerial insectivore was rare in the Caatingas and on the Chapada do Araripe. Based upon coloration characteristics and the distributional information summarized by Vizotto and Taddei (1976), specimens from northeastern Brazil should be considered *M. t. temminckii*. Vizotto and Taddei (1976) are the only authors to analyze morphometric relations in *M. temminck-ii* via statistical techniques. None of the 17 external characters they examine exhibit statistically significant secondary sexual variation, and consistent mean value relations between males and females are not evident. On the other hand, males are consistently larger than females for cranial characters, but only two characters exhibit statistically significant differences. In order to perform statistical analyses of individual and secondary sexual variation for specimens from the Northeast of Brazil, samples are combined from Caatingas and Cerrado biomes; the results of the analyses are summarized in Table 27. None of the external or cranial characters exhibit statistically significant secondary sexual variation, however, male sample means are consistently larger than those of females. Although data from the Northeast as well as that of Vizotto and Taddei (1976) fail to detect significant differences between males and females, both analyses strongly suggest sexual dimorphism with males larger than females, at least for cranial characters. Larger sample sizes or a multivariate analysis of variance would facilitate the detection of sexual dimorphism in this species. ## Tadarida laticaudata (E. Geoffroy, 1805) This fast-flying aerial insectivore was rare in the Caatingas and on the Chapada do Araripe. Samples from the Northeast of Brazil are small, so selected measurements (after Swanepoel and Genoways, 1979) of an adult male and female from the Caatingas and an adult male from the Chapada do Araripe are herein reported (total length: 96, 96, 107; tail length: 37, 39, 36; hindfoot length: 8, 8, 8; ear length: 18, 18, 20; greatest length of skull: 15.7, 16.2, —; condylobasal length: 14.9, 15.2, —; zygomatic breadth: 9.3, 9.3, —; postorbital constriction: 3.3, 3.2, —; breadth of braincase: 8.0, 7.7, —; length of the maxillary toothrow: 6.1, 6.2, —; and breadth across the upper molars: 6.6, 6.6, —). ## Neoplatymops mattogrossensis (Cunha Vieira, 1942) This small molossid aerial insectivore was common in rocky habitats and on serrotes in the Caatingas where it roosted in low-lying rock crevices. Approximately 46% of the 48 captured adult specimens from the Caatingas were males; as such, the sexes occurred in statistically indistinguishable proportions (Binomial Test, P > .05). N. mattogrossensis is absent from the Chapada do Araripe. The biology of this species is poorly known. Other than the original description (Cunha Vieira, 1942) and the revision of flat-headed bats by Peterson (1965), only isolated distributional records appear in the literature (Handley, 1976; Sazima and Taddei, 1976). In a multivariate analysis of the family Molossidae, Freeman (1981) recently suggested allocating specimens in this species to the genus Molossops; however a consensus on this taxonomic question is not yet apparent. Both Peterson (1965) and Sazima and Taddei (1976) report mensural data for N. mattogrossensis but no one has statistically examined individual or secondary sexual variation in this species. Willig (unpublished ms.) has detected statistically significant geographic variation within and among populations of *Neoplatymops* from the Northeast of Brazil, southern Venezuela, and southwestern British Guiana. Table 28 summarizes the results of a statistical analysis of individual and secondary sexual variation in this species. Like other molossids, *Neoplatymops* exhibits appreciable sexual dimorphism. Males have larger sample means than females for 12 of the 13 external characters. Males have larger sample means than females for all 16 cranial characters. Table 27.—Summary statistics for external and cranial characters (mean; standard deviation, SD; standard error of the mean, SE; coefficient of variation, CV; sample size, n) of Molossops temminckii males and females from both Caatinga and Cerrado biomes. Due to small sample sizes, data from both biomes were combined to determine the existence of significant (P < .050) secondary sexual variation via a one-way analysis of variance (Model I) with replication.		Caa	tinga	Cer	rado			Analysis of varia	ance			----------	--------------	-------	-------------	-------	---	----	-------------------	------	--------------			ර් ර්	99	<i>ಕೆಕೆ</i>	99	Factor	df	MS	F	Significance		-				Total	length						Mean	78.00	82.67	79.25	81.33	Sex	1	24.55	2.83	.127		SD	-	3.22	2.50	4.16	Within	9	8.67	2.00			SE	_	1.86	1.25	2.40	***************************************		0.07				CV	_	3.90	3.15	5.11							n	1	3	4	3								1	3	•		1						1.000																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																							
21.00	24.00	26.00	29.00	length	1	(12(42	510		Mean		24.00	26.00		Sex	1	6.136	.43	.510		SD	_	3.46	3.74	1.72	Within	9	14.389				SE	_	2.00	1.87	1.00							CV	-	14.42	14.38	5.97							1	I	3	4	3												ot length						Mean	6.00	5.00	5.25	5.00	Sex	1	.436	.55	.479		SD	_	1.00	.96	1.00	Within	9	.800				SE	_	.48	.48	.58							CV	_	20.00	18.29	20.00							ı	1	3	4	3											Ear	length						Mean	12.00	12.67	13.00	12.33	Sex	1	.246	.51	.492		SD	_	.58	.82	.58	Within	9	.478				SE	_	.33	.41	.33							CV	_	4.58	6.31	4.70							n	1	3	4	3											Tragu	s length						Mean	3.00	2.67	2.25	3.33	Sex	1	.982	1.23	.297		SD	_	.58	.50	1.53	Within	9	.800				SE	_	.33	.25	.88							CV	_	21.72	22.22	45.94							n	1	3	4	3												m length						Mean	33.00	31.67	31.50	31.00	Sex	1	.594	.87	.375		SD	_	.58	.58	1.00	Within	9	.682	.07	.575		SE	_	.33	.29	.58	***************************************		.002				CV	_	1.83	1.84	3.23							n	1	3	4	3												eight						Mean	6.50	7.00	6.88	6.33	Sex	1	.049	.08	.787		SD	-	.50	1.03	.76	Within	9	.626	.00	./0/		SE	_	.29	.52	.44	** 1111111	7	.020				CV	_	7.14	14.97	12.01							n	1	3	4	3								_		·		f digit one						Mean	5.00	4.22	175	4.67		1	246	06	252		SD	3.00	4.33	4.75		Sex Within	1	.246	.96	.353		SE	_	.58	.50	.58	within	9	.256				SE CV	_	.33	.25	.33								_ 1	13.39	10.53	12.42							n	1	3	4	3						Table 27.—Continued.			tinga		таdо			Analysis of varia				------	--------------	-----------	-----------	-------------	---	----	-------------------	------	--------------			<i></i> రేరే	99	ేరే	99	Factor	df	MS	F	Significance						Length of	digit three						Mean	62.00	61.33	60.50	61.00	Sex	1	.367	.02	.880		SD		1.53	6.56	1.00	Within	9	15.293	.02	.000		SE	_	.88	3.28	.58	VV ILIIIII	,	13.293							10.84	1.64							CV	_	2.49 3	4	3							n	1	3	4												Length o	f digit four						Mean	52.00	51.00	51.50	51.00	Sex	1	.982	.32	.524		SD	_	1.73	2.52	1.00	Within	9	3.022				SE	_	1.00	1.26	.58							CV	_	3.39	4.89	1.96							n	1	3	4	3											Lanath	of digit five							• • • • •		26.50				2.502		2/2		Mean	38.00	35.67	36.50	35.67	Sex	1	3.503	1.42	.263		SD	_	1.53	1.92	1.53	Within	9	2.459				SE	_	.88	.96	.80							CV	_	4.29	5.26	4.29							n	1	3	4	3											Tibia	length						Mean	11.00	10.00	10.50	10.33	Sex	1	.512	2.27	.166		SD		0	.58	.58	Within	9	.226	2.27	.100		SE	_	0	.29	.33	** [[[]]]	,	.220				CV	_	0	5.52	5.61								_ 1	3	3.32 4	3.01							n	I	3	4												Calca	r length						Mean	10.00	10.33	9.25	8.34	Sex	1	.012	.01	.941		SD	_	1.16	1.26	1.53	Within	9	2.059				SE	_	.67	.63	.88							CV	_	11.23	13.62	18.35							n	1	3	4	3											Greatest le	ngth of skull							12.20		12.42			,	060	5.1	.485		Mean	13.20	13.23	13.43	13.20	Sex	1	.060	.54	.485		SD	_	.31	.45	.36	Within	8	.112				SE	_	.18	.26	.21							CV	_	2.34	3.35	2.73							n	1	3	3	3											Condylob	asal length						Mean	13.10	13.10	13.10	12.83		1	.043	.24	.634		SD	_	.27	.66	.38	Within	8	.174				SE	_	.15	.38	.22	. , , , , , , , , , , , , , , , , , , ,	Ü	* * * *T				CV	_	2.06	5.04	2.96								1	3	3.04	3							n	1	3	3												Zygoma	tic breadth						Mean	9.00	9.27	9.40	9.20	Sex	1	.008	.08	.784		SD	_	.06	.53	0	Within	7	.099				SE	_	.03	.31	0							CV	_	.65	5.64	0							n	1	3	3	2											Postovkita	Lanetriation								2 4=	2.5-		l constriction		001	0.0	013		Mean	3.70	3.67	3.70	3.70	Sex	1	.001	.06	.812		SD	_	.06	.10	.17	Within	8	.011				SE	_	.03	.06	.10							CV	_	1.63	2.70	4.59							n	1	3	3	3						Table 27.—Continued.		Caat	inga	Ceri	ado			Analysis of varia		<u> </u>		----------	------	------	-------------	---------------	------------------	--------	-------------------	-------	--------------			đđ	99	ðð	φφ	Factor	df	MS	F	Significance						Mastoi	d breadth						Mean	8.80	8.67	8.90	8.40	Sex	1	.280	2.20	.177		SD	_	.15	.62	.20	Within	8	.128	2.20	,		SE	_	.09	.36	.11		Ü	20				CV	_	1.73	6.97	2.38							n	1	3	3	3								_				of braincase						Mean	6.90	7.13	7 17			1	006	12	726		SD	0.90	.15	7.17 .32	7.17 .21	Sex Within	1	.006 .049	.12	.736		SE	_	.09	.19	.12	WILLIII	8	.049				CV	_	2.10	4.46								n .	1	3	3	2.93							11	1	3	3													l breadth						Mean	5.10	5.20	5.03	4.90	Sex	1	.000	.00	1.000		SD	_	0	.21	.17	Within	8	.036				SE	_	0	.12	.10							CV		0	4.17	3.47							n	1	3	3	3												f braincase						Mean	6.50	6.83	7.17	6.67	Sex	1	.150	.68	.432		SD	_	.31	.61	.47	Within	8	.219				SE	_	.18	.35	.27							CV	_	4.54	8.51	7.05							n	1	3	3	3										B	readth across	the upper mola	rs					Mean	6.60	6.47	6.73	6.70	Sex	1	.033	.44	.524		SD	_	.15	.46	.10	Within	8	.074				SE	_	.09	.27	.06							CV	_	2.32	6.84	1.49							n	1	3	3	3										B_{i}	eadth across	the upper canin	ies					Mean	3.70	3.83	4.00	3.73	Sex	1	.048	1.63	.237		SD	_	.06	.17	.21	Within	8	.030	1.05	.23,		SE	_	.03	.10	.12	********	o	.030				CV	_	1.57	4.25	5.63							n	1	3	3	3										Le	ngth of the m	axillary toothre	ow.					Mean	5.50	5.13		5.20		1	.017	.73	.419		SD	_	.15	.15	0	Within	8	.030	. 7 3	.717		SE	_	.09	.09	0	** 1611111	0	.030				CV	_	2.92	2.90	0							n	1	3	3	3										Levati		molariform too	athrow					Mean	4.50	4.40					000	0.2	0.07		SD	4.50	.10	4.33 .06	4.33 .06	Sex	1	.000	.02	.886		SE SE	_	.06	.03	.03	Within	8	.008				CV	_	2.27	1.39	1.39							n .	1	3	3	3												widest molar						Mean	2.00	1.93	1.80	1.80	Sex	1	001	0.5	037		SD	4.00	.06	.10	.10	Sex Within	1	.001	.05	.826		SE	_	.03	.10	.10	within	8	.013				CV	_	3.11	5.56	5.56								1	3.11	3.30	3.36						Table 27.—Continued.		Caat	inga	Cerr	ado			Analysis of varia	nce			------------------------	-------	-------	--------------	------------------	------------------	-----	-------------------	------	--------------			ేరే	ŞŞ	<i>దే</i> దే	φφ	Factor	df	MS	F	Significance					(Greatest lengtli	of the mandib	le					Mean	10.50	10.40	10.37	10.30	Sex	1	.006	.09	.776		SD	_	.36	.32	.17	Within	8	.069				SE	_	.21	.19	.10							CV	_	3.46	3.09	1.65							n	1	3	3	3										Le	ngth of the mo	ındibular tootlı	row					Mean	5.90	5.80	5.93	5.80	Sex	1	.038	1.12	.321		SD	_	0	.25	.27	Within	8	.033				SE	_	0	.15	.15							$\mathbb{C}\mathbf{V}$	_	0	4.22	4.66							n	1	3	3	3										i	Length of the c	coronoid proces	S					Mean	3.40	3.20	3.20	3.20	Sex	1	.006	.15	.713		SD	_	.10	.36	.20	Within	8	.041				SE	_	.06	.21	.06							CV	_	3.13	11.25	3.13							n	1	3	3	3						Table 28.—Summary statistics for external and cranial characters (mean; standard deviation, SD; standard error of the mean, SE; coefficient of variation, CV; sample size, n) of Neoplatymops mattogrossensis males and females from the Caatinga biome. A one-way analysis of variance (Model I) with replication is presented for each character. The existence of significant secondary sexual variation is indicated by P values less than or equal to .050.		Caa	tinga	Cer	rado			Analysis of varia	ance			------	-------	-------	-----	--------	------------	----						
-------------------	------	--------------			ేం	99	ðð	QQ	Factor	df	MS	F	Significance					,	Tota	l length						Mean	79.14	76.81			Sex	1	64.621	4.19	.046		SD	3.12	4.49			Within	46	15.405				SE	.67	.88									CV	3.94	5.85									n	22	26													Tail	length						Mean	25.50	25.65			Sex	1	.282	.04	.843		SD	2.84	2.50			Within	46	7.074				SE	.61	.49									CV	11.14	9.75									n	22	26													Hindfe	oot length						Mean	5.27	4.96			Sex	1	1.154	4.70	.040		SD	.55	.45			Within	46	.246				SE	.12	.09									CV	10.44	9.07									n	22	26													Ear	length						Mean	13.36	13.12			Sex	1	.734	1.71	.197		SD	.58	.71			Within	46	.429				SE	.12	.14									CV	4.34	4.51									n	22	26								Table 28.—Continued.		Caa	atinga	Сеттаdо			Analysis of vari	ance			------	-------	--------	-----------	---	-----	------------------	------	--------------				φφ	\$\$ \$P	Factor	df	MS	F	Significance					Trag	us length						Mean	3.14	3.04		Sex	1	.114	.21	.650		SD	.89	.60		Within	46	.556	.21	.030		SE	.19	.12		** 1011111	40	.550				CV	28.34	19.74								n	22	26										20	r							N4	30.05	20.22	Forea	rm length						Mean	30.05	30.23		Sex	1	.409	.43	.514		SD	.90	1.03		Within	46	.947				SE	.19	.20								CV	3.00	3.41								n	22	26											W	eight eight						Mean	6.11	5.39		Sex	1	6.333	8.42	.006		SD	.64	1.02		Within	46	.753				SE	.14	.20								CV	10.47	18.92								n	22	26											Length	of digit one						Mean	5.54	5.16	22.113.11	Sex	1	1.739	3.15	002		SD	.60	.85		Within	45	.551	3.13	.083		SE	.13	.17		VV Itillii	43	.551				CV	10.83	16.47								n	22	25									22	23											Length o	f digit three						Mean	55.22	54.16		Sex	1	13.330	6.30	.016		SD	1.11	1.70		Within	45	2.116				SE	.24	.34								CV	2.01	3.14								n	22	25											Length o	of digit four						Mean	46.05	44.04		Sex	1	47.064	4.00	.052		SD	3.36	3.49		Within	45	11.776	4.00	.032		SE	.72	.70		** 1011111	7,0	11.770				CV	7.30	7.92								n	22	25											T	C 1: C							22.4		Length o	of digit five						Mean	33.64	32.96		Sex	1	5.353	1.91	.968		SD	1.59	1.74		Within	45	2.801				SE	.34	.35								CV	4.73	5.28								n	22	25											Tibia	length						Mean	10.27	10.04		Sex	1	.634	1.34	.254		SD	.63	.74		Within	45	.474	1.54	.254		SE	.14	.15		***************************************		.4/4				CV	6.13	7.37								n	22	25											Colo	r length						Moor	0.00	9.70	Caica				_			Mean	9.09	8.60		Sex	1	2.820	2.77	.103		SD	1.15	.87		Within	45	1.018				SE	.25	.17								CV	12.65	10.12								n	22	25							Table 28.—Continued.		Caa	tinga	Cerrado			Analysis of varia	ance				----------	------------	-------------	----------------	----------------	---------	-------------------	-------	--------------	--			ðð	QQ	82	Factor	df	MS	F	Significance						Greatest le	ength of skull							Mean	14.11	13.47	ortares: A	Sex	ı	4.485	38.05	<.001			SD	.35	.34		Within	41	.118	30.03	<.001			SE	.08	.07		VV ILIIIII	41	.110					CV	2.48	2.52									n .	21	22									11	21	<u>-</u> 2												Condylo	basal length							Mean	13.91	13.25		Sex	1	4.738	49.40	<.001			SD	.31	.31		Within	41	.096					SE	.07	.07									CV	2.23	2.34									n	21	22												Zvgoma	tic breadth							Mean	9.76	0.21	22/80/114	Sex	1	1.290	20.31	<.001			SD		9.31 .25		Within	1 24	.064	20.31	<.001			SE SE	.25 .07			vv ittiili	24	.004					CV	2.56	.08										15	2.69									n	13	11												Postorbita	l constriction							Mean	3.36	3.29		Sex	1	.059	7.01	.011			SD	.10	.08		Within	45	.008					SE	.02	.02									CV	2.98	2.43									n	22	25												Mastoi	d breadth								2.50		Musioi			2.1.2	10.02	. 001			Mean	9.60	9.06		Sex	1	2.143	19.92	<.001			SD	.40	.22		Within	28	.108					SE	.10	.06									CV	4.17	2.43									n	16	14												Breadth o	of braincase							Mean	7.08	6.81		Sex	1	.768	14.58	<.001			SD	.28	.18		Within	41	.053					SE	.06	.04									CV	3.95	2.64									n	21	22												ъ.	1.1 1.1										Kostra	l breadth							Mean	4.33	3.88		Sex	1	2.431	49.88	<.001			SD	.22	.22		Within	45	.049					SE	.05	.04									CV	5.08	5.67									n	22	25												Height o	f braincase							Mean	6.08	5.94	3-11	Sex	1	.203	3.19	.082			SD	.27	.24		Within	44	.064	3.17	.002			SE SE	.06	.05		** 1(11111	77	.504					CV	4.44	.03 4.04									n .	20	22									11	20	22												Breadth across	the upper mola	rs						Mean	6.54	6.40		Sex	1	.246	12.29	.001			SD	.13	.15		Within	44	.020					SE	.03	.03									CV	1.99	2.34									n	21	25								Table 28.—Continued.		Caa	tinga	С	errado			Analysis of vari	ance			------	-------	-------	-----	------------------	---	--------	------------------	-------	--------------			ేరే	QQ	ేరే	QQ	Factor	df	MS	F	Significance						Breadth across	the upper canin	ies					Mean	3.92	3.56			Sex	1	1.457	65.91	<.001		SD	.15	.15			Within	43	.022				SE	.03	.03									CV	3.83	4.21									n	21	24													Length of the n	naxillary toothre	ow					Mean	5.57	5.34			Sex	1	.607	28.30	<.001		SD	.16	.13			Within	44	.022				SE	.04	.03									CV	2.87	2.43									n	21	25												Len	gth of the upper	r molariform tod	othrow					Mean	4.27	4.20			Sex	1	.058	2.84	.099		SD	.12	.16			Within	44	.021				SE	.03	.03									CV	2.81	3.81									n	21	25													Width of th	e widest molar						Mean	2.00	1.96			Sex	1	.014	2.31	.135		SD	.08	.08			Within	44	.006				SE	.02	.02									CV	4.00	4.08									n	21	25													Greatest length	h of the mandibi	le					Mean	10.56	10.25			Sex	1	1.020	10.28	.003		SD	.33	.30			Within	42	.099	10.20	.005		SE	.07	.06				. –					CV	3.13	2.93									n	22	22												,	Length of the n	axillary toothro	эw					Mean	5.91	5.69		0 -5	Sex	1	.965	69.28	<.001		SD	.10	.13			Within	43	.014	07.20	<.001		SE	.02	.03			***************************************	43	.014				CV	1.69	2.28									n	21	24													Length of the	coronoid proces.	S					Mean	3.76	3.46			Sex	1	.950	25.87	<.001		SD	.22	.15			Within	41	.037	23.07	~.001		SE	.05	.03			** 1411111	71	.037				CV	5.85	4.34									n	22	21
Brazil; the results are summarized in Table 29. Males have larger sample means than females for 26 of the 29 variables; six external and 16 cranial characters exhibit statistically significant secondary sexual variation. Like other molossids, M. molossus is highly dimorphic with males larger than females. Approximately half of the eharacters analyzed have larger sample means in the Caatingas than in the Cerrado, nine of that group exhibit statistically significant geographic variation. Only three characters have larger sample means in the Cerrado than in the Caatingas and only one of those variables exhibits statistically significant geographic variation. Geographic dimorphism is pronounced in the Northeast with Caatingas populations being larger on the average than Cerrado populations. #### Eumops sp. This molossid aerial insectivore was rare in the Caatingas and absent from the Chapada do Araripe. The single specimen from the Caatingas was taken in December; because of a damaged skull, specific status could not be ascertained with confidence. #### MORPHOMETRICS Throughout this study, morphometric variation has been analyzed using statistical techniques. Indeed, the consistent application of statistical criteria distinguishes this work from most other studies. Two interrelated questions naturally arise concerning such an approach: 1) does statistical significance mean biological significance? and 2) does biological significance mean statistical significance? The answer to both questions lies in exactly understanding the way in which biologists ask questions about the natural world. Frequently, one is interested in various biological characteristics of a large population (for example, a species, subspecies, population, sex, or age group), but due to various limitations, only a small portion of the entire population can feasibly be examined. As such, samples are utilized to infer information about the populations from which they were derived. Further, samples are used in order to compare characteristics of two or more populations. Whenever samples are utilized to infer knowledge about larger populations, random error in selecting a sample affects the observed sample characteristics. The application of statistical techniques allows the biologist to ascertain with a prescribed level of confidence whether observed differences between samples could be due to chance or due to true differences in the populations from which they were derived. Clearly, perceived differences between samples which are caused by chance ought not to denote biological differences between the populations from which the samples were taken; the observed differences between the samples are due to chance. When statistical differences cannot be shown for a particular analysis, then the data do not support the existence of any population differences. The failure of a statistical test to detect a real difference between the populations is related to Type II error or β error (Sokal and Rohlf, 1969). Small samples make it difficult to detect real differences between populations; hence, very small differences between populations require large samples in order to be detected. Incorrectly ascribing differences to a population based upon sample characteristics is related to Type I error or α error (Sokal and Rohlf, 1969). Even when statistical significance is obtained, there is a known chance of being incorrect (that is, the populations may not be different at all). The exact chance of incorrectly asserting a difference between populations which does not, in fact, exist is equal to the level of significance of the statistical test (for example the 'P' level). Statistical differences detected with small samples are as valid as statistical differences detected with large samples because the probability of the differences being due to chance is defined by the Type I error. In summary, statistical analysis is a method of considering the effects of chance in an investigation utilizing samples. Statistical significance indicates that the observed sample differences are *not* due to chance, while a failure to obtain statistical significance infers that any observed differences between samples are indistinguishable from chance variations. The biological meaning of the results is predicated upon a choice of characters with biological significance. If the character has biological meaning, then a significant statistical test reveals true differ- Table 29.—Summary statistics for external and cranial characters (mean; standard deviation, SD; standard error of the mean, SE; coefficient of variation, CV; sample size, n) of Molossus molossus males and females from both Caatinga and Cerrado biomes. A two-way analysis of variance (Model I) with replication is presented for each character. The existence of significant secondary sexual or geographic variation is indicated by P values less than or equal to .050.		Caa	itinga	Ce	rado			Analysis of vari	ance			-----------------	--------	--------	--------	----------	--------------	-----	------------------	-------	--------------			88	δδ	88	99	Factor	df	MS	F	Significance						Total	length	-					Aean	108.20	102.90	106.30	101.75	Area	1	46.513	3.79	.055		D	3.41	3.41	4.00	3.13	Sex	i	485.113	39.52	<.001		SE .	.76	.76	.90	.70	$A \times S$	1	2.813	.23	.634		CV	3.15	3.31	3.76	3.08	Error	76	12.276	.23	.034		- Y 1	20	20	20	20	LIIOI	70	12.270									length						1ean	37.60	33.95	38.10	35.70	Area	1	25.313	2.11	.151		D	2.60	2.82	3.48	4.61	Sex	1	183.013	15.22	<.001		E	.58	.63	.78	1.03	$A \times S$	1	7.813	.65	.423		CV	6.91	8.31	9.13	12.91	Error	76	12.023	.03	.423			20	20	20	20	EHOI	70	12.023					20	20	20								_					ot length						1ean	7.45	6.75	6.95	7.00	Area	1	.313	.57	.453		D	.69	.91	.83	.46	Sex	1	2.113	3.85	.053		E	.15	.20	.19	.10	$A \times S$	1	2.813	5.13	.026		CV	9.26	13.48	11.94	6.57	Error	76	.548					20	20	20	20											Ear	length						1ean	13.75	13.25	13.55	13.10	Area	1	.613	1.65	.203		D	.55	.72	.61	.55	Sex	1	4.513	12.14	<.001		E	.12	.16	.14	.12	$A \times S$	1	.012	.03	.855		CV	4.00	5.43	4.50	4.20	Error	76	.372				l	20	20	20	20											Tragu	s length						1ean	1.95	2.00	1.95	1.90	Area	1	.050	.67	.417		D	.22	0	.22	.45	Sex	1	.000	.00	.999		E	.05	0	.05	.10	$A \times S$	1	.050	.67	.417		CV	11.28	0	11.28	23.68	Error	76	.075				1	20	20	20	20			1070								Forear	m length						1ean	40.95	39.95	40.60	40.20	Area	1	.050	.04	.836		D	.83	1.43	1.00	.95	Sex	1	9.800	8.47	.005		E	.19	.32	.22	.21	$A \times S$	1	1.800	1.56	.216		CV	2.03	3.58	2.46	2.36	Error	76	1.156				ı	20	20	20	20											W	eight						1ean	16.67	15.15	15.98	13.33	Area	1	31.878	10.65	.002		SD	1.29	1.95	1.77	1.84	Sex	1	87.153	29.11	<.001		SE	.29	.44	.40	.41	$A \times S$	1	6.328	2.11	.150		CV	7.74	12.87	11.07	13.80	Error	76	2.994				1	20	20	20	20											Length o	f digit one						Mean	6.55	6.15	6.85	6.70	Area	1	3.613	9.08	.003		SD	.60	.49	.81	.57	Sex	1	1.513	3.80	.055		SE	.13	.11	.18	.13	$A \times S$	î	.313	.79	.378		CV	9.16	7.97	11.82	8.51	Error	76	.398	.,,	.570			·	20	20	20	Liioi	, 0	.570			Table 29.—Continued.		Caa	tinga	Cerrado				Analysis of var				-----------------	--------------	-------------	-------------	-------------	--	---------	-----------------	---------------	---------------			<i>ే</i> దే	99	ేరే	ŞŞ	Factor	df	MS	F	Significance						Length of	f digit three						Mean	77.85	76.35	76.00	75.40	Area	1	39.200	5.30	.024		SD	2.03	2.39	2.49	3.68	Sex	1	22.050	2.98	.088		SE	.46	.53	.56	.83	$A \times S$	1	4.050	.55	.462		CV	2.61	3.13	3.28	4.88	Error	76	7.393	.55			1	20	20	20	20	Ziio.	, 0					•	20	20	20		f digit four						11000	50.15	57.60	57.05			1	24.200	2.02	0.50		Mean	58.15	57.60	57.05	56.50	Area	1	24.200	3.92	.050		SD SE	1.84	2.62 .59	2.46	2.89	$\begin{array}{c} Sex \\ A \times S \end{array}$	1	6.050	.98 .00	.330		CV	.41 3.16	4.55	.55 4.31	.65 5.12	Error	1 76	.000 6.175	.00	1.000		_ v 1	20	20	20	20	EHOI	70	0.173									of digit five						Aean	41.85	41.40	40.80	40.65	Area	1	16.200	5.67	.020		SD	1.66	2.09	1.47	1.46	Sex	1	1.800	.63	.430		SE	.37	.47	.33	.33	$A \times S$	1	.450	.16	.693		CV	3.97	5.04	3.60	3.59	Error	76	2.857	.10	.073		1	20	20	20	20	Litoi	70	2.037				•	20	20	20		length						Mean	15.20	14.55	15.30	14.85	Area	1	.800	2.44	.122		SD	15.20 .52	.69	.57	.49	Sex	1 1	6.050	18.47	<.001		SE	.12	.15	.13	.11	$A \times S$	1	.200	.61	.437		CV	3.42	4.74	3.73	3.30	Error	76	.328	.01	.437		- * 1	20	20	20	20	LIIOI	70	.526				•	20	20	20																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																
	r length						1000	14.10	12.05	12.15			1	1.512	.70	.405		Mean SD	14.10	12.95	13.15	13.35	Area Sex	1	1.513 4.513	2.09	.152		SE	2.02	1.28	1.23 .27	1.18 .26	A×S	1 1	9.113	4.23	.043		CV	.45 14.33	.29 9.88	9.35	8.84	Error	76	2.160	4.23	.043		_ v 1	20	20	20	20	EHOI	70	2.100				•	20	20	20		ngth of skull							16.02	1624	16.05				276	1 77	107		Mean	16.92	16.24	16.95	15.97	Area	1	.276	1.77	.187		SD	.36	.39	.45	.37	Sex	1	13.695 .435	87.89 2.79	<.001 .099		SE CV	.08	.09	.10	.08	A×S	1 76	.433 .156	2.19	.099		_ v 1	2.13 20	2.40 20	2.65 20	2.32 20	Error	70	.130									asal length						Aean	15.63	14.80	15.49	14.53	_	1	.903	8.81	.004		SD	.35	.30	.35	.28	Sex	1	15.931	155.34	<.001		SE SE	.08	.07	.08	.06	$A \times S$	1	.091	.89	.349		CV	2.24	2.03	2.26	1.93	Error	76	.103	.07	.517		1	20	20	20	20	Elloi	70	.103				-					tic breadth						Mean	11.00	10.53	10.86	10.35	Area	1	.496	10.26	.002		viean SD	.25	.20	.25	.18	Sex	1	4.851	100.20	<.001		SE	.05	.04	.05	.04	A×S	1	.006	.13	.723		CV	2.27	1.90	2.30	1.74	Error	76	.048	.13	.143		1 ·	20	20	2.30	20	LITOI	70	.070									constriction						Mean	3.56	3.52	3.62	3.48	Area	1	.001	.04	.833		SD	.18	.14	.17	.15	Sex	i	.171	6.81	.011		SE	.04	.03	.04	.03	$A \times S$	i	.055	2.19	.143		CV	5.06	3.98	4.70	4.31	Error	76	.025				n	20	20	20	20		_				Table 29.—Continued.		Caa	atinga	Ce	rrado			Analysis of variance				------	-------	--------------	-------------	----------------	-----------------	---------	----------------------	-------	--------------			ðð	99	ేరే	99	Factor	df	MS	F	Significance						Mastoi	d breadth						Mean	10.58	10.19	10.53	10.06	Area	1	.153	2.37	.128		SD	.22	.20	.31	.28	Sex	1	3.741	57.85	<.001		SE	.05	.05	.07	.06	$A \times S$	1	.036	.56	.457		CV	2.08	1.96	2.94	2.78	Error	76	.065	.50	.437		n	20	20	20	20	LITOI	70	.003							_0		of braincase						Mean	8.84	8.63	8.96	8.56	Area	1	.013	.32	.573		SD	.16	.16	.27	.18	Sex	1	1.861	47.69	<.001		SE	.04	.04	.06	.04	$A \times S$	1	.200	5.13	.026		CV	1.81	1.85	3.01	2.10	Error	76	.039	3.13	.020		n	20	20	20	20	Lifoi	70	.039									l breadth						Mean	5.17	5.09	5.28	4.99	Area	1	.001	0.2	970		SD	.17	.18						.03	.870		SE	.04	.04	.21	.23	Sex	1	.66	16.84	<.001		CV	3.29	3.54	.05 3.98	.05	A×S	1	.210	5.31	.020		n	20	20	20	4.61 20	Error	76						20	20	20		f braincase						11	0.77	0.24	0.62								Mean	9.77	9.24	9.63	9.03	Area	1	.578	8.72	.004		SD	.19	.25	.32	.25	Sex	1	.385	96.37	<.001		SE	.04	.06	.07	.06	$A \times S$	1	.025	.37	.545		CV	1.94	2.71	3.32	2.77	Error	76	.066				n	20	20	20	20								7.04	5 .40		Breadth across							Mean	7.96	7.68	7.86	7.59	Area	1	.171	4.16	.045		SD	.16	.14	.29	.19	Sex	1	1.485	36.09	<.001		SE	.04	.03	.06	.04	$A \times S$	1	.000	.00	.956		CV	2.01	1.82	3.69	2.50	Error	76	.041				n	20	20	20	20											readth across	the upper cani	nes					Mean	4.48	4.34	4.50	4.20	Area	1	.066	2.37	.128		SD	.14	.17	.20	.15	Sex	1	1.035	37.10	<.001		SE	.03	.04	.05	.03	$A \times S$	1	.120	4.31	.041		CV	3.13	3.92	4.44	3.57	Error	76	.027				n	20	20	20	20											ength of the m	axillary toothi	row					Mean	6.22	5.97	6.25	5.96	Area	1	.001	.02	.896		SD	.11	.22	.20	.13	Sex	1	1.458	50.53	<.001		SE	.03	.05	.05	.03	$A \times S$	1	.008	.28	.600		CV	1.77	3.69	3.20	2.18	Error	76	.029				n	20	20	20	20											h of the upper	molariform to	oothrow					Mean	4.87	4.78	4.93	4.74	Area	1	.003	.16	.689		SD	.12	.12	.19	.11	Sex	1	.378	19.58	<.001		SE	.03	.03	.04	.02	$A \times S$	1	.055	2.85	.095		CV	2.46	2.51	3.85	2.32	Error	76	.019				n	20	20	20	20												widest molar						Mean	2.19	2.15	2.16	2.11	Area	1	.025	3.03	.086		SD	.11	.08	.07	.10	Sex	1	.041	5.01	.208		SE	.02	.02	.02	.02	$A \times S$	1	.001	.06	.804		CV	5.02	3.72	3.24	4.74	Error	76	.008				n	20	20	20	20						Table 29.—Continued.		Caatinga		Сегтадо		Analysis of variance							------	----------	-------	---------	-----------------	----------------------	-----	-------	--------	--------------	--			ðð	φç	ðð	φ	Factor	đf	MS	F	Significance						(Greatest length	of the mandil	ole						Mean	12.04	11.51	12.02	11.19	Area	1	.613	10.10	.002			SD	.26	.23	.23	.26	Sex	1	9.248	152.43	<.001			SE	.06	.05	.05	.06	$A \times S$	1	.481	7.92	.006			CV	2.16	2.00	1.91	2.32	Error	76	.061					n	20	20	20	20											Le	ngth of the me	andibular tooth	row						Mean	6.97	6.61	6.85	6.52	Area	1	.231	8.02	.006			SD	.14	.20	.18	.15	Sex	1	2.346	81.44	<.001			SE	.03	.05	.04	.03	$A \times S$	1	.003	.11	.743			CV	2.01	3.03	2.63	2.30	Error	76	.029					n	20	20	20	20												Length of the	coronoid proce	SS						Mean	4.57	4.34	4.50	4.29	Area	1	.066	1.61	.208			SD	.14	.13	.23	.28	Sex	1	.946	23.06	<.001			SE	.03	.03	.05	.06	$A \times S$	1	.003	.08	.783			CV	3.06	2.93	5.11	6.53	Error	76	.041					n	20	20	20	20							ences in a biologically important characteristic. Failure to detect a statistically significant difference between samples infers that no real difference exists, or that if it does exist, the magnitude of the difference is too small to be detected by samples of the size utilized in the investigation. #### Microgeographic Variation Phenotypic variation within populations is the raw material upon which Natural Selection operates. However, only that portion of the phenotypic variation under genetic control is affected by Natural Selection. Unfortunately, a strong correlation between genic variation (estimated by electromorph heterozygosity) and morphological variation in mammalian populations has not been convincingly demonstrated (for a critical review, see Schnell and Selander, 1981); rather, it appears that genic, karyotypic and morphological evolution progress independently of each other. In part, the disparity between genic and morphological variation may be ascribed to regulator genes which greatly affect morphology but are not sampled by electrophoretic studies. Nonetheless, only by comparing variation in different populations can one determine how and to what extent the differences between individuals are molded into the differences that separate races and species (Simpson, 1944; Mayr, 1964; Yablokov, 1974). The consensus appears to be that the fields of population and quantitative genetics have not progressed in a direction to aid in the interpretation of these dynamics (Sokal, 1977). Two approaches to the problem have been suggested (Falconer, 1972)—first, new techniques in quantitative biology need to be developed in order to analyze patterns of natural variation; and second, a wider variety of characters and organisms need to be examined in order to decide which phenomena are general and which may be attributed to special circumstances. This study reveals the extent and magnitude of variation present within and between chiropteran populations in close geographic proximity. As such, it aids in illuminating general patterns of meristic variation present in natural populations, which both Mayr (1964) and Falconer (1972) suggested as a prerequisite for understanding evolutionary dynamics. Nine bat species from the Brazilian Northeast were caught in sufficient quantities to permit statistical analyses of mean differences between populations from Caatingas and Cerrado biomes. The α level (Type I error) specified for each statistical test predetermines the probability of detecting differences between populations which occur because of chance alone. When 30 different morphometric characters are being statistically analyzed for mean differences, an average of 1.5 (.05 by 30) of the tests should incorrectly indicate that the means are different (if the tests are independent), when in fact they are not. Although some of the tests for some of the species may not be independent, this relation was utilized to determine the minimum number of statistical differences required to indicate the presence of real differences between Caatingas and Cerrado populations. If the assumption of independence is correct, the occurrence of 5 or more characters with statistically different means																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																																										
should occur less than one percent of the time due to chance alone. As a conservative measure then, only bat species with 5 or more significant differences were indicated as exhibiting geographic size dimorphism because pronounced correlation among the characters would increase the probability of mistakenly detecting significance. Five bat species did exhibit geographic size dimorphism for at least five morphometric characters. Caatingas populations were larger than Cerrado populations in four species—C. perspicillata (Table 16), V. lineatus (Table 18), A. jamaicensis (Table 20), and M. molossus (Table 29)whereas A. geoffroyi (Table 15) exhibited geographic size dimorphism in which the Cerrado population was larger than the Caatingas population. These results caution against pooling data from different localities whenever possible in order to detect age- or sex-related differences. Further, they indicate that appreciable morphometric divergence can exist between populations of highly mobile species even when these populations inhabit adjacent areas. This implies that the amount of genetic communication between populations of these five species is quite low; Ehrlich and Raven (1969) considered this phenomenon to have impact upon the very definition of a biological species. The utilization of statistical analysis can be a powerful tool in systematics, however, it should not form the sole basis upon which decisions concerning subspecific status are evaluated. Most populations will have at least slightly different parametric mean values because of the combined effects of mutation, migration, drift and natural selection acting upon local populations. The ability to detect these differences, even if they are slight, increases with sample size and the sensitivity of the utilized statistical procedure. Hence, the elucidation of statistical differences between populations often only confirms the original supposition that the samples were drawn from biological populations with different mean values. Clearly, the decision to apply subspecific designation to taxa must go beyond the detection of statistical differences because different populations within a subspecies could also exhibit such differences. ## Secondary Sexual Variation Although biologists have been interested in sexual dimorphism for many years, distinctions between the causes and functions of the phenomenon frequently are not evident. Polygamous mating systems, differential rates of maturation, unequal sex ratios, and differential resource utilization are often associated with species exhibiting dimorphism (Sealander, 1957; Daly and Wilson, 1978). A number of hypotheses which are not mutually exclusive have been developed to account for dimorphism in naturally occurring populations. The most prominent hypothesis, originally promulgated by Darwin (1859, 1871a, 1871b), suggests that one sex usually eompetes for reproductive access to the opposite sex. This results in different selective regimes acting on the competitors and on the objects of competition (see Trivers, 1972; Wilson, 1975; and Ralls, 1976 for reviews). Trivers (1972) hypothesized that the sex with the greatest parental investment will be in short supply and thereby be the object of competition. Due to their limited parental investment, male mammals should compete among themselves for the available females. Because large size often is beneficial in agonistic encounters, selection should differentially favor a larger size in males than in females. An alternative hypothesis suggests that sexual dimorphism reduces intraspecific competition for resources (Selander, 1966, 1972). Examples in the literature for skates (Feduccia and Slaughter, 1974), fish (Keast, 1966), lizards (Schoener, 1967, 1968), birds (Rand, 1952; Selander, 1966, 1972; Earhart and Johnson, 1970) and mammals (Kummer, 1971) have linked body size differences between males and females to differences in food consumption. In contrast, Mares and Williams (1977) found that different sized individuals within various granivorous rodent species did not consume different sized seeds. Moreover, Husar (1976) described dietary differences between male and female vespertilionid bats in which the differences in diet were in prey type rather than in prey size. Williams and Findley (1979) have shown that males and females in the species examined by Husar (1976) were not dimorphic. Thus, even if the sexes do differentially utilize resources, partitioning need not occur by prey size and sexual size dimorphism need not be the mechanism promoting the differences in diet. If size variation can reduce intraspecific compe- tition, it is not clear why greater individual variation, without sex associated differences, could not accomplish the same results. All other circumstances being equal, there is no *a priori* reason to expect males to be larger than females or females to be larger than males as a result of the differential niche hypothesis. At best, once other factors initially select for sex-related size differences, these differences could be accentuated by the benefits of reduced resource competition by niche partitioning among the sexes. The observation that females are frequently larger than males has revealed the general inadequacy of both the sexual selection and niche partitioning hypotheses. Ralls (1976) advances the "Big Mother" hypothesis to account for cases of sexual size dimorphism in which females are larger than males. For a variety of reasons, a larger female may be a more fit mother (that is, produce a larger number of successful progeny). Larger mothers may produce offspring with greater weights at birth; provide more or higher quality milk; more efficiently transport or defend young; or maintain homeothermic equilibrium conducive to embryonic development. Myers (1978) examined size variation in vespertilionid bats and only found dimorphism in which females were significantly larger than males. His analyses further showed that the wings of females were proportionately larger than those of males, with the degree of dimorphism correlated with litter size. Because of these observations, Myers (1978) suggested that the demands of motherhood were greater on species producing multiple young. Williams and Findley (1979) contend that the data considered by Myers (1978) were biased because monomorphic species with multiple young and highly dimorphic species with single young were excluded from the analyses. In their work (Williams and Findley, 1979), correlations between litter size and the degree of dimorphism were not evident. In accord with the work of Bogan (1975) and Findley and Traut (1970), they conclude that dimorphism in vespertilionids is probably related to differential thermoregulation rather than wing loading. Within the Chiroptera, sexual dimorphism is primarily restricted to size, although the possession of dimorphic glands in the Emballonuridae and Molossidae is quite common (Bradbury, 1977). Sixteen species of bats from the Northeast of Brazil exhibited significant secondary sexual variation for eight or more morphometric characters. In approximately one-third of those cases, the sample means of females were larger than the sample means of the males (P. macrotis, Table 3; G. soricina, Table 13; L. mordax, Table 14; V. lineatus, Table 18; A. concolor, Table 19; D. rotundus, Table 22; L. borealis, Table 25). Male sample means were larger than those of females for the other species in which statistically significant dimorphism was detected (N. leporinus, Table 4; T. silvicola, Table 8; P. discolor, Table 10; P. hastatus, Table 11; A. geoffroyi, Table 15; S. lilium, Table 17; A. jamaicensis, Table 20; N. mattogrossensis, Table 28; M. molossus, Table 29). Clearly, dimorphism for size is common among the Chiroptera, and unlike the situation in many vertebrate orders, females are frequently significantly larger than males. Ralls (1976) summarizes our knowledge of sexual dimorphism in bats in which the females have been implicated to be larger than males while Myers (1978) and Williams and Findley (1979) present additional information on bats in the family Vespertilionidae. Statistically significant dimorphism has only been substantiated for 12 of the 45 potential cases that Ralls reports. Three of the species implicated as having larger females than males either show little size dimorphism (A. lituratus) or exhibit statistically significantly dimorphism in which the males are actually larger than the females (A. geoffrovi and A. jamaicensis) in populations from Brazil. The data for D. rotundus and L. borealis substantiates Ralls' (1976) claim that females are larger than males in these species. Further, this study adds five different species to Ralls' list of bats in which females are larger than males (P. macrotis, G. soricina, L. mordax, V. lineatus, A. concolor). Most authors agree that both selection pressures consistent with the hypothesis of sexual selection and the "Big Mother" hypothesis affect to greater or lesser extents the observed size relations between the sexes. The data from this study indicates that selective pressures favoring large females are more common than generally perceived for the Chiroptera. Knowledge of bat behaviour and natural history is somewhat limited, but it does not suggest a reversal of the theoretical conditions in which males compete among themselves for females (see Bradbury, 1977). Indeed, male bats invest very little in their offspring other than the time and energy involved in copulation (see Kleiman and Malcolm, 1981). In those cases where behaviour patterns have been elucidated, it appears that males compete among themselves for access to reproductive females (Bradbury, 1977). By implication, sexual se- lection is probably not the dominant factor producing larger females. However, it may well be the factor that reduces the observed differences between the sexes in those cases where females
are statistically larger than males. Although Myers (1978) and Williams and Findley (1979) disagree in detail about the particular factors that affect dimorphism in vespertilionids, both attribute the observed differences to biological conditions consistent with the "Big Mother" hypothesis. This study eannot distinguish between the thermoregulatory hypothesis favored by Williams and Findley (1979) and the wing-loading hypothesis of Myers (1978); however, it can qualify some of the contentions they presented. Myers (1978) conjectures that small molossids should show reduced sexual dimorphism (males larger than females) compared to larger species in the family because they share certain flight and feeding characteristics with the Vespertilionidae. In the two species of molossids with sufficiently large samples to permit statistical analyses (M. molossus and N. mattogrossensis), the males are consistently larger and statistically different than females for both cranial and external characters. Further, N. mattogrossensis is one of the smallest members of the Molossidae and it clearly does not exhibit the reduced dimorphism predicted by Myers (1978). Similarly, Williams and Findley (1979) reject Myers' contention by showing that lasiurine bats in the family Verspertilionidae do not exhibit reduced dimorphism (females larger than males) although they would be predicted to do so by Myers' reasoning. The morphometric analyses of *P. macrotis* from the Caatingas are in accord with the observations of Myers (1978) and others (see Bradbury, 1977) for Emballonurids; this small bat is dimorphic with females larger than males. Of course, the proponents of the thermoregulatory hypothesis could also claim that the data supports their position since the demands of thermoregulation are accentuated for small species. Obviously, more data need to be collected from vespertilionid populations occurring along latitudinal or altitudinal gradients to see if species with eurythermal distributions exhibit degrees of dimorphism which are enhanced as temperature decreases. Although not nearly as pervasive as in the Vespertilionidae, the incidence of sexual dimorphism with females larger than males is also common in the Phyllostomidae (in contrast, see the comments of Bradbury, 1977). Females are larger than males in five of the eleven species exhibiting statistically significant secondary sexual dimorphism. Within the various phyllostomid subfamilies, it appears that smaller species tend to be dimorphic with females larger than males, whereas larger species tend to exhibit dimorphism with larger males. Although Myers (1978) suggests a relation between feeding ecology and dimorphism, little evidence is available to support that position within the Phyllostomidae. The occurrence of dimorphism within a subfamily does not seem to be related to the feeding strategies of the constituent species. ## ACKNOWLEDGMENTS I gratefully acknowledge the initial inspiration, invaluable advice, constant encouragement, assistance and friendship of Dr. Michael A. Mares, my major advisor. I also wish to sincerely thank Drs. Steven J. Gaulin, Hugh H. Genoways, Richard T. Hartman, William Kodrich, and Robert J. Raikow, for their constructive criticisms and suggestions. Nancy A. Bitar was an island of stability during turbulent times; her selfless aid can never be repaid. Sandra Wight and Cleon Gros are particularly remembered for their kindness, cooperation, and skill in producing the final manuscript. My friends and fellow researchers in Brazil, Drs. Thomas E. Lacher, Jr., Karl E. Streilein, and Laurie J. Vitt, tolerated much and contributed in innumerable ways-their comradeship, concern, and assistance were invaluable. Dr. Aristides P. Leão, Dr. Paulo E. Vanzolini and the staff of the Academia Brasileira de Ciências contributed in countless ways to the success of the final project; their untiring efforts in support of the research are deeply appreciated. The Instituto Brasileiro de Desenvolvimento Florestal provided accommodations at the Floresta Nacional Araripe-Apodí. The manuscript was significantly improved by the critical reviews of Drs. K. F. Koopman and D. E. Wilson. Many people assisted with field work. João Luna de Carvalho, my field assistant, friend and 'compadre' aided in all aspects of the research; much of the success of this research can be attributed to his faithful and skillful help. Karl E. Streilein, Raimundo Lopes da Silva, Thomas E. Lacher, Jr., Antônio Lemos Silva, 'Tico,' and Laurie E. Vitt assisted in the field at times also. Numerous Brasileiros helped make my stay in the Northeast rewarding both professionally and personally. In addition, many made their fazendas available for research. Antônio Zilclésio Pinto Saraiva, Ismar Sã, Chico Ventura, 'Chame Anna,' Rejane, Ricolice, Soraya, Maria das Neves, and the Teixeira family are especially thanked for their warmth and consideration. Nancy A. Bitar, James D. Willig and Mary R. Willig aided in data compilation while the former also provided editorial guidance through the morass of orthography. Dr. Hugh Genoways and Suzanne McLaren kindly cooperated in museum-related aspects of the research, while the former also provided some of the species identifications. Field work was generously supported by a grant to Michael A. Mares from the Academia Brasileira de Ciências [project number 85 (Ecology, evolution and zoogeography of mammals), as a part of the larger program, 'Ecological Studies of the Semi-arid Region of Northeastern Brazil']. Additional funds were provided through Dr. Craig C. Black and Dr. Hugh H. Genoways through the M. Graham Netting Research Fund established by a gift from the Cordelia S. May Charitable Trust, Carnegie Museum of Natural History. Support was also provided by the Department of Biological Sciences, Loyola University and a Mellon Fellowship from the University of Pittsburgh. ## LITERATURE CITED - AB'SABER, A. N. 1970. Provincias geológicas e domínios morfoclimáticos no Brasil. Geomorfologia Univ. São Paulo, Inst. de Geografia, 20:1–26. - ALLEN, G. M. 1908. Notes on Chiroptera. Bull. Mus. Comp. Zool., 52:25-62. - ALVIM, PAULO DE T. 1949. Observações ecologicas sobre flora da Região semi-arida do Nordeste. Revista Ceres Vicosa, 8: 105–111. - Andersen, K. 1906. On bats of the genera *Micronycteris* and *Glyphonycteris*. Ann. Mag. Nat. Hist., ser. 7, 18:50–65. - ——. 1908. A monograph of the chiropteran genera *Uro-derma*, *Enchisthenes* and *Artibeus*. Proc. Zool. Soc. London, pp. 204–319. - Anderson, S. 1957. New records of the bat, *Anoura geoffroyi lasiopyga*. Chicago Acad. Sci. Nat. Hist. Misc., 159:1–3. - Andrade, G. O. de, and R. C. Lins. 1964. Introducão ao estudo dos "brejos" pernambucanos. Arq. Inst. Cien. Terra, Recife, 2:105–111. - Bogan, M. A. 1975. Geographic variation in *Myotis californicus* in the Southwestern United States and Mexico. U.S. Fish Wildl. Serv., Wildl. Res. Rept., 3:1–31. - Bradbury, J. W. 1977. Social organization and communication. Pp. 1–72, *in* Biology of bats (W. A. Wimsatt, ed.), Academic Press, New York, 3:xvi+651. - BURMEISTER, H. 1854. Systematische übersicht der thiere brasiliens welche mährend einer Reise durch die Provinzen von Rio de Janeiro und Minas geraës . . . S. augethiere (Mammalia). Georg. Reimer, Berlin, 1:x + 1-341. - CABRERA, A. 1917. Mamiféros del Viaje al Pacífico. Trab. Mus. Nac. Cien. Nat. Zool., Madrid, 31:1–62. - ——. 1957. Catálogo de los Mamíferos de America del Sur. I (Metatheria-Unguiculata-Carnivora). Rev. Mus. Argentino Cienc. Nat. "Bernardino Rivadavia," Zool., 4:1–307. - CUNHA VIEIRA, C. O. DA. 1942. Ensaio monográfico sobre os Quirópteros do Brasil. Arq. Zool., Est. São Paulo, 3:219– 471. - CUVIER, F. 1828. Description d'un nouveau Genre de Chauvesouris sous le nom de Furie. Mémoires du Muséum d'Histoire Naturelle (Paris), 16:149-155. - Dalquest, W. W. 1950. Records of mammals from the Mexican state of San Luis Potosí. Occas. Papers Mus. Zool., Louisiana State Univ., 23:1–15. - Daly, M., and M. Wilson. 1978. Sex, evolution and behavior. Wadsworth Publishing Co., Inc., Belmont, California. - DARWIN, C. 1859. On the origin of species by means of natural - selection, or the preservation of favored races in the struggle of life. Murray, London, - Davis, W. B. 1968. Review of the genus *Uroderma* (Chiroptera). J. Mamm., 49:676–698. - ——. 1970. The large fruit bats (genus *Artibeus*) of Middle America, with a review of the *Artibeus jamaicensis* complex. J. Mamm., 51:105–122. - ——. 1973. Geographic variation in the fishing bat, *Noctilio leporinus*. J. Mamm., 54:862–874. - DIAS, J. 1960. Estudos sobre a geologia da Chapada do Araripe, no Município de Exu, Estado de Pernambuco. Arq. Inst. Pesq. Agro., 5:33–40. - DIETZ, R. S., and J. C. HOLDEN. 1970. Reconstruction of Pangaea: break up and dispersion of continents, Permian to present. J. Geophys. Res., 75:4939–4956. - Dobson, G. E. 1878. Catalogue of the Chiroptera in the collection of the British Museum. British Mus., London, xiii + 567 pp. - D'Orbigny, A., and P. GERVAIS. 1847. Mammifères. *In* Voyage dans l'Amérique Meridionale . . . années 1826 . . . 1833. (A. D'Orbigny), Paris and Strasbourg, 4(2):1–32. - EARHART, C. M., and N. K. JOHNSON. 1970. Size dimorphism and food habits of North American owls. Condor, 72:251–264. - EHRLICH, P. R., and P. H. RAVEN. 1969. Differentiation of populations. Science, 165:1228–1232. - FALCONER, D. S. 1972. Introduction to quantitative genetics. The Roland Press Co., New York. - Feduccia, A., and B. H. Slaughter. 1974. Sexual dimorphism in skates (Rajidae) and its possible role in differential niche utilization. Evolution, 28:164–168. - Felten, H. 1956. Quirópteros (Mammalia: Chiroptera) en El Salvador. Comm. Inst. Trop. Invest. Cient., Univ. El Salvador, 5:153–170. - FINDLEY, J. S., and G. L. TRAUT. 1970. Geographic variation in *Pipistrellus hesperus*. J. Mamm., 50:362–367. - FLEMING, T. H., E. T. HOOPER, and D. E.
WILSON. 1972. Three Central American bat communities: structure, reproductive cycles, and movement patterns. Ecology, 53:555–569. - Freise, F. W. 1938. The drought region of northeastern Brazil. Geogf. Rev., 28:363–378. - Frota Pessoa, O., A. B. Coutinho, D. de A. Lima, A. F. Furtado, M. J. de A. Lima, S. M. Pereira, and E. A. Mansur. - 1971. Biologia Nordeste I. Ecologia e taxionomia, Universidade Federal de Pernambucco, Recife. - GARDNER, A. L. 1976. The distributional status of some Peruvian mammals. Occas. Papers Mus. Zool., Louisiana State Univ., 48:1–18. - GEOFFROY-SAINT-HILAIRE, E. 1805. Note sur une petite famille de chauve-souris d'Amérique, designée sous le nom générique de *Molossus*. Bulletin des Sciences, par la Société Philomatique de Paris, 3(96):278–279 (=378–379). - —. 1810. Sur les Phyllostomes et les espèces de Mégadermes, deux. Genres de la famille des Chauve-souris. Annales du Muséum d'Histoire Naturelle (Paris), 15:157–198. - GERVAIS, P. 1856. Chéiroptères sud-Américains. Pp. 25–88, pls. 7–15, in F. Castelnau, Animaux nouveaux ou rares de l'Amerique du Sud. Paris. 1855 (1856). - Goodwin, G. G. 1942. A summary of recognizable species of *Tonatia* with descriptions of two new species. J. Mamm., 23:204–209. - ——. 1959. Bats of the subgenus *Natalus*. Amer. Mus. Novitates, 1977:1–22. - GRAY, J. E. 1838. A revision of the genera of bats (Vespertilionidae), and the description of some new genera and species. Mag. Zool. Bot., 2:483–505. - ——. 1842. Descriptions of some new genera and fifty unrecorded species of Mammalia. Ann. Mag. Nat. Hist., ser. 1, 10:255–267. - GUIMARÃES, L. R. 1972. Contribuição à epidemiologia da peste endêmica no Nordeste do Brasil e estado da Bahia. Estudo das pulgas econtradas nessa região. Revista Bras. de Malariologia e Doencas Tropicais, 24:95–164. - HAFFER, J. 1979. Quaternary biogeography of tropical lowland South America. Pp. 107–140, *in* The South American herpetofauna: its origin, evolution and dispersal (W. E. Duellman, ed.), Monogr. Mus. Nat. Hist., Univ. Kansas Press, 7: 1–485 - HAHN, W. L. 1907. A review of the bats of the genus *Hemiderma*. Proc. U. S. Nat. Mus., 32:103-118. - Handley, C. O., Jr. 1960. Descriptions of new bats from Panama. Proc. U. S. Nat. Mus., 112:459–479. - 1966. Checklist of the mammals of Panama. Pp. 753–795, in Ectoparasites of Panama (R. L. Wenzel and V. J. Tipton, eds.), Field Mus. Nat. Hist., Chicago, Illinois, xii + 861 pp. - ——. 1976. Mammals of the Smithsonian Venezuelan project. Brigham Young Univ. Sci. Bull., 20:1–89. - Heithaus, E. R., T. H. Fleming, and P. A. Opler. 1975. Foraging patterns and resource utilization in seven species of bats in a seasonal tropical forest. Ecology, 56:841–854. - Hershkovitz, P. 1949. Mammals of Northern Colombia. Preliminary reports No. 5: Bats (Chiroptera). Proc. U. S. Nat. Mus., 99:429–454. - . 1972. The recent mammals of the Neotropical region: a zoogeographic and ecological review. Pp.311-431, in Evolution, mammals and southern continents (A. Keast, F. Erk and B. Glass, eds.), State Univ. New York Press, Albany, New York, 543 pp. - HUSSAR, S. L. 1976. Behavioral character displacement: evidence of food partitioning in insectivorous bats. J. Mamm., 57:331–338. - Husson, A. M. 1962. The bats of Suriname. Zool. Verhand., Leiden, 58:1–222. - JAMES, P. E. 1942. Latin America. The Odyssey Press, New York. - Jones, J. K., Jr., and D. C. Carter. 1976. Annotated checklist with keys to subfamilies and genera. Pp. 7–38, *in* Biology of bats of the New World family Phyllostomatidae. Part I (R. J. Baker, J. K. Jones, Jr., and D. C. Carter, eds.), Special Publ. Mus., Texas Tech Univ., 10:1–218. - JONES, J. K., JR., J. D. SMITH, and R. W. TURNER. 1971. Noteworthy records of bats from Nicaragua, with a checklist of the Chiropteran fauna of the country. Occas. Papers Mus. Nat. Hist., Univ. Kansas, 2:1–35. - KEAST, A. 1966. Trophic interrelationships in the fish fauna of a small stream. Univ. Michigan, Great Lakes Res. Div. Publ., 15:51–79. - KLEIMAN, D. G., and J. R. MALCOLM. 1981. The evolution of male parental investment in mammals. Pp. 347–387, *in* Parental care in mammals (D. J. Gubernick and P. H. Klopfer, eds.), Plenum Press, New York, 459 pp. - KOOPMAN, K. F. 1978. Zoogeography of Peruvian bats with special emphasis on the role of the Andes. Amer. Mus. Novitates, 2651:1–33. - Kummer, H. 1971. Primate societies: group techniques of ecological adaptation. Aldine-Atherton, Chicago, Illinois. - Lacher, T. E., Jr. 1981. The comparative social behavior of *Kerodon rupestris* and *Galea spixii* in the xeric Caatinga of northeastern Brazil. Bull. Carnegie Mus. Nat. Hist., 17:1–71. - LAVAL, R. K. 1973. A revision of the neotropical bats of the genus *Myotis*. Nat. Hist. Mus. Los Angeles Co., Sci. Bull., 15:1–54. - LEACH, W. E. 1821. The characters of seven genera of bats with foliaeeous appendages to the nose. Trans. Linnean Soc. London, 13:73–82. - LIMA, J. L. 1926. Os morcegos do collecção do Museu Paulista. Rev. Mus. Paulista, São Paulo, 14:1–87. - LINNAEUS, C. 1758. Systema Naturae. 10th ed., Holimae, Vol. 1, 824 pp. - MACARTHUR, R. H. 1965. Patterns of species diversity. Biol. Rev., 40:510–533. - McNab, B. K. 1971. The structure of tropical bat faunas. Ecology, 52:352–358. - MARES, M. A., and D. F. WILLIAMS. 1977. Experimental support for food particle size resource allocation in heteromyid rodents. Ecology, 58:1186–1190. - MARES, M. A., M. R. WILLIG, K. E. STREILEIN, and T. E. LACHER, JR. 1981. The mammals of northeastern Brazil: a preliminary assessment. Ann. Carnegie Mus., 50:81–137. - MARES, M. A., M. R. WILLIG, K. E. STREILEIN, and T. E. LACHER, JR. The role of the Brazilian Caatingas in South American biogeography: tropical mammals in a dry region. Unpublished manuscript. - MARES, M. A., and R. A. OJEDA. 1982. Patterns of diversity and adaptation in South American hystricognath rodents. Pp. 393–432, in South American mammalian biology (M. A. Mares and H. H. Genoways, eds.), Spec. Publ. Ser. Pymatuning Lab. Ecology, Univ. Pittsburgh, Pittsburgh, Pennsylvania, 6:xii + 1–539. - MARKHAM, C. G. 1972. Aspectos climatólogicos da seca no Brasil-Nordeste. Recife, Sudene Assessoria Técnica, Divisão de Documentação. - 1974. Apparent periodicities in rainfall at Fortaleza, Ceará, Brazil. J. Appl. Meterology, 13:176–179. - . 1975. Twenty-six-year eyclical distribution of drought and flood in Ceará, Brazil. The Prof. Geographer, 27:454– 456. - MARKHAM, C. G., and D. R. McLain. 1977. Sea surface temperature related to rain in Ceará, north-eastern Brazil. Nature, 265:320–323. - MARTINEZ, L., and B. VILLA-R. 1940. Segunda contribución al conocimiento de los murciélagos Mexicanos. II. Estado de Guerrero. Ann. Inst. Biol., México, 11:291–361. - MAYR, E. 1964. Systematics and the origin of species. Dover Publications, Inc., New York. - Melo, M. L. De. 1956. Excursion Guidebook, No. 7. Northeast. International Geographical Union, Brazilian National Committee, Rio de Janeiro, 1956, 231 pp. - MILLER, G. S., Jr. 1898. Descriptions of five new phyllostome bats. Proc. Acad. Nat. Sci., Philadelphia, 50:326–337. - ——. 1913. Five new mammals from tropical America. Proc. Biol. Soc. Washington, 26:31–34. - MÜLLER, P. 1776. Des Ritters Carl von Linné Vollständigen Natursystems. Nurnberg, Supplementsband, pp. 1–384. - MYERS, P. 1978. Sexual dimorphism in size of vespertilionid bats. Amer. Nat., 112:701–711. - OJASTI, J., and O. J. LINARES. 1971. Adiciones de la fauna de murciélagos de Venezuela con notas sobre las especies del genero *Diclidurus* (Chiroptera). Acta Biol. Venezolana, 7: 421–441. - Olfers, I. 1818. Bemerkungen zu Illiger's Ueberblick der Saugthiere, nach ihrer Vertheilung über die Welttheile, rucksichtlich der Süd-americanischen Arten (Species). Pp. 192–237, in Journal von Brasilien (W. L. Eschwege), Heft 2. In Neue Bibliothek (F. J. Bertuch), Bd. 15, Weimar. - Pallas, P. S. 1766. Miscellanea zoologica. Hague Comitum, xii + 224 pp. - —. 1767. Vespertiliones in genere, fasc. 3, 35 p., pl. 1–4. Spicilegia zoologica, Berlin, Vol. 1. - PATTERSON, B., and R. Pascual. 1968. The fossil mammal fauna of South America. Quart. Rev. Biol., 43:409–451. - Peters, W. 1865. Die zu den *Vampyri* gehorigen Flederthiere und naturliche Stellung der Gattung *Antrozous*. Monatsb. Kön. preuss. Akad. Wiss., Berlin, pp. 503–525. - 1866. Fernere Mittheilungen zur Kenntnifs der Flederthiere, namentlich über Arten der Leidener und Britischen Museums. Monatsb. Kön. preuss. Akad. Wiss., Berlin, pp. 672–681. - Peterson, R. 1965. A revision of the flat-headed bats of the family Molossidae from South America and Africa. Contrib. Royal Ontario Mus., 64:1–32. - PINE, R. H. 1972. The bats of the genus *Carollia*. Tech. Monogr., Texas Agric. Exp. Sta., Texas A&M Univ., 8:1–125. - PIRLOT, P. 1972. Chiropteres de Moyenne Amazonie. Mammalia, 36:71–85. - Power, D. M., and J. R. Tamsitt. 1973. Variation in *Phyllostomus discolor* (Chiroptera: Phyllostomatidae). Canadian J. Zool., 51:461–468. - Ralls, K. 1976. Mammals in which females are larger than males. Quart. Rev. Biol., 51:245–276. - RAND, A. L. 1952. Secondary sexual characters and ecological competition. Fieldiana, Zool., 34:65–70. - Rehn, J. A. G. 1900. Notes on Chiroptera. Proc. Acad. Nat. Sci. Philadelphia, 52:755–759. - ——. 1902. Three new American bats. Proc. Acad. Nat. Sci. Philadelphia, 54:638–641. - Reis, A. C. de S. 1976. Clima da Caatinga. Ann. Acad. Brasil. Ciênc., 48:325–335. - ROBINSON, D. 1971. Costa Rican mammals. Pp. 1–6, *in* Handbook for tropical biology in Costa Rica (C. E. Schnell, ed.), Organization for Tropical Studies, San Jose. - SANBORN, C. C. 1936. Records and measurements of neotropical bats. Field Mus. Nat. Hist., Zool. Ser., 20:93–106. - ——. 1949. Bats of the genus *Micronycteris* and its subgenera. Fieldiana, Zool., 31:215–233. - SAZIMA, 1., and V. A. TADDEI. 1976. A second record of the South American flat-headed bat, *Neoplatymops mattogrossensis*. J. Mamm.,
57:757–758. - Schinz, H. R. 1821. Das Thierreich. Stuttgart and Tübingen. Vol. 1, xxxviii + 894 p. - Schnell, G. D., and R. K. Selander. 1981. Environmental and morphological correlates of genetic variation in mammals. Pp. 60–99, *in* Mammalian population genetics (M. H. Smith and J. Joule, eds.), Univ. Georgia Press, Athens, Georgia, 380 pp. - Schoener, T. W. 1967. The ecological significance of sexual dimorphism in size in the lizard *Anolis consperus*. Science, 155:474–477. - ——. 1968. The *Anolis* lizards of Bimini: resource partitioning in a complex fauna. Ecology, 49:704–726. - Schreber, J. C. D. 1774. Die Säugthiere in Abbildungen nach der Natur mit Beschreibungen, Erlangen. Theil l, Hefts 1–9, pp. 1–190. - SEALANDER, C. 1957. On mating systems and sexual selection. Amer. Nat., 99:129–141. - Selander, R. K. 1966. Sexual dimorphism and differential niche utilization in birds. Condor, 68:115–151. - ——. 1972. Sexual selection and dimorphism in birds. Pp.180–230, *in* Sexual selection and the descent of man (1871–1971) (B. Campbell, ed.), Aldine-Atherton, Chicago, Illinois. - Sick, H. 1965. A fauna do Cerrado. Arq. Zool., 12:71–93. - SIMPSON, B. B., and J. HAFFER. 1978. Speciation patterns in the Amazonian forest biota. Ann. Rev. Ecol. Syst., 9:497–518. - SIMPSON, G. G. 1944. Tempo and mode in evolution. Columbia Univ. Press, New York. - ——. 1964. Species density of North American recent mammals. Syst. Zool., 13:57–73. - SMITH, J. D. 1972. Systematics of the Chiropteran family Mormoopidae. Univ. Kansas Mus. Nat. Hist., Misc. Publ., 56: 1–132. - SMITH, J. D., and H. H. GENOWAYS. 1974. Bats of Margarita Island, Venezuela, with zoogeographic comments. Bull. S. California Acad. Sci., 73:64–79. - SOKAL, R. R. 1977. Evolution and systematics: introductory remarks. Pp. 35–37, *in* The changing scenes in the natural sciences, 1776–1976 (E. C. Goulden, ed.), Fulton Press, Inc., Lancaster, Pennsylvania. - Sokal, R. R., and F. J. Rohlf. 1969. Biometry. W. H. Freeman and Company, San Francisco, California. - Spix, J. de. 1823. Simiarum et Vespertilionum Brasiliensium species novae. Monachii, viii + 72 pp. - Streilein, K. E. 1981. The small mammal fauna of the semiarid Brazilian Caatinga: adaptations to a fluctuating environment. Unpublished Ph.D. thesis, Univ. Pittsburgh, 190 pp. - Swanepoel, P., and H. H. Genoways. 1979. Morphometrics. Pp. 13–106, *in* Biology of bats of the New World family - Phyllostomatidae. Part III (R. J. Baker, J. K. Jones, Jr., and D. C. Carter, eds.), Spec. Publ. Mus., Texas Tech Univ., 16: 1–441. - TADDEI, V. A. 1975a. Phyllostomidae (Chiroptera) do Norteocidental do Estado de São Paulo I—Phyllostominae. Ciência e Cultura, 27:621–632. - 1975b. Phyllostomidae (Chiroptera) do Norte-ocidental do Estado de S\u00e3o Paulo II—Glossophaginae; Carolliinae; Sturnirinae. Ci\u00e3ncia e Cultura, 27:723-734. - 1979. Phyllostomadidae (Chiroptera) do Norte-ocidental do estado de São Paulo III—Stenoderminae. Ciência e Cultura, 31:900–914. - TAMSITT, J. R., and D. VALDIVIESO. 1963. Reproductive cycle of the big fruit-eating bat, *Artibeus lituratus* Olfers. Nature, 198–204. - THOMAS, M. E. 1972. Preliminary study of the annual breeding patterns and population fluctuations of bats in three ecologically distinct habitats in southwestern Colombia. Unpublished Ph.D. dissert., Tulane Univ., New Orleans, 161 pp. - THOMAS, O. 1903. Notes on South American monkeys, bats, carnivores and rodents, with descriptions of new species. Ann. Mag. Nat. Hist., ser. 7, 11:376–382. - TRIVERS, R. L. 1972. Parental investment and sexual selection. Pp. 136–179, *in* Sexual selection and the descent of man (1871–1971) (B. S. Campbell, ed.), Aldine-Atherton, Chicago, Illinois, 378 pp. - TUTTLE, M. D. 1970. Distribution and zoogeography of Peruvian bats, with comments on natural history. Univ. Kansas Sci. Bull., 49:45–86. - UIEDA, W., I. SAZIMA, and A. STORTI FILHO. 1980. Aspectos da Biologia do morcego *Furipterus horrens* (Mammalia, Chiroptera, Furipteridae). Rev. Brasil. Biol., 40:59–66. - VALDEZ, R. 1970. Taxonomy and geographic variation of bats of the genus *Phyllostomus*. Ph.D. Dissertation, Texas A&M Univ - Vanzolini, P. E. 1974. Ecological and geographical distribution of lizards in Pernambuco, northeastern Brasil (Sauria). Papéis Avulsos Zool., São Paulo, 28:61–90. - —. 1976. On the lizards of a Cerrado-Caatinga contact: Evolutionary and zoogeographic implications (Sauria). Papéis Avulsos Zool., São Paulo, 29:111–119. - VIZOTTO, L. D., and V. A. TADDEI. 1976. Notas sobre *Molossops* temminckii temminckii e *Molossops* planirostris (Chiroptera-Molossidae). Naturalia, 2:47–59. - WAGNER, J. A. 1843. Diagnosnen neuer Arten Brasilischer Handflügler. Archiv. für Naturgeschichte (Wiegmann, Berlin) 9(1):365–368. - WALKER, E. P. 1975. Mammals of the world. The Johns Hopkins Univ. Press, Baltimore, 3rd ed. - WHITTAKER, R. H. 1975. Communities and ecosystems. Macmillan Publ. Co., Inc., New York. - WILLIAMS, D. F. 1978. Taxonomic and karyologic comments on small brown bats, genus *Eptesicus*, from South America. Ann. Carnegie Mus., 47:361–383. - WILLIAMS, D. F., and J. S. FINDLEY. 1979. Sexual size dimorphism in vespertilionid bats. Amer. Midland Nat., 102:113–126 - WILLIG, M. R. The biology of *Neoplatymops mattogrossensis*. (unpublished manuscript). - WILSON, E. O. 1975. Sociobiology. The Belnap Press of Harvard Univ. Press, Cambridge, Massachusetts. - WILSON, J. W. 1974. Analytical zoogeography of North American mammals. Evolution, 28:124–140. - YABLOKOV, A. V. 1974. Variability of mammals. Amerind Publishing Co., Pvt. Ltd., New Delhi.